cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 587 results. Next

A068634 a(n) = lcm(n, R(n)), where R(n) (A004086) = digit reversal of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 84, 403, 574, 255, 976, 1207, 162, 1729, 20, 84, 22, 736, 168, 1300, 806, 216, 1148, 2668, 30, 403, 736, 33, 1462, 1855, 252, 2701, 3154, 1209, 40, 574, 168, 1462, 44, 270, 1472, 3478, 336, 4606, 50, 255, 1300, 1855, 270, 55
Offset: 1

Views

Author

Amarnath Murthy, Feb 27 2002

Keywords

Examples

			a(12) = lcm(12,21) = 84.
		

Programs

  • Maple
    r:= proc(n) local q;
          `if`(n<10, n, irem(n, 10, 'q') *10^(length(n)-1) +r(q))
        end:
    a:= n-> ilcm(n, r(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 16 2012
  • Mathematica
    Array[LCM[#,FromDigits[Reverse[IntegerDigits[#]]]]&,50] (* Harvey P. Dale, Dec 13 2011 *)

Extensions

More terms from Alois P. Heinz, Aug 16 2012

A070760 Numbers k such that k*rev(k) is a square different from k^2, where rev=A004086, decimal reversal.

Original entry on oeis.org

100, 144, 169, 200, 288, 300, 400, 441, 500, 528, 600, 700, 768, 800, 825, 867, 882, 900, 961, 1089, 1100, 1584, 2178, 2200, 3300, 4400, 4851, 5500, 6600, 7700, 8712, 8800, 9801, 9900, 10000, 10100, 10404, 10609, 10989
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

If k is a palindrome (A002113), then 100*k is a term. If k is a term, then 100*k is a term. - Chai Wah Wu, Mar 31 2018
From Bernard Schott, Jan 02-10 2019: (Start)
There are six different families of integers in this sequence.
1) If k and rev(k) do not have the same number of digits:
All these integers are in A322835 where the first four families are explained and detailed.
Family 1: A002113(j) * 100^k
Family 2: A035090(j) * 100^k
Family 3: A082994(j) * 100^k
Family 4: A323061(j) * 10^(2k+1)
2) If k and rev(k) have the same number of digits.
All these integers are in A062917.
Family 5: Non-palindromic squares whose reverse is also square. These integers are in A035090.
Family 6: Non-palindromic numbers k, such that k * rev(k) is a square, with k and rev(k) not both square. These integers are in A082994.
3) Relationships between these different sequences.
A035090 Union A082994 = A062917 with empty intersection, and,
A062917 Union A322835 = {This sequence} with empty intersection. (End)

Examples

			a(2)=144: rev(144)=441, 144*441=(12^2)*(21^2)=(12*21)^2 and 144<>12*21=252.
From _Bernard Schott_, Jan 02 2019: (Start)
Example for family 1: 200 * 2 = 400 = 20^2
Example for family 2: 14400 * 441 = 120^2 * 21^2 = 2520^2
Example for family 3: 28800 * 882 = (2 * 120^2) * (2 * 21^2) = 5040^2
Example for family 4: 5449680 * 869445 = 2176740^2
Example for family 5: 169 * 961 = 13^2 * 31^2 = 403^2
Example for family 6: 528 * 825 = (33 * 4^2) * (33 * 5^2) = 660^2. (End)
		

Crossrefs

Programs

  • Haskell
    a070760 n = a070760_list !! (n-1)
    a070760_list = [x | x <- [0..], let y = a061205 x,
                        y /= x ^ 2, a010052 y == 1]
    -- Reinhard Zumkeller, Apr 10 2012, Apr 29 2011
  • Mathematica
    Select[ Range[11000], (k = Sqrt[ # * FromDigits @ Reverse @ IntegerDigits[#]]; IntegerQ[k] && k != #) &] (* Jean-François Alcover, Nov 30 2011 *)
    sdnQ[n_]:=Module[{c=n*IntegerReverse[n]},c!=n^2&&IntegerQ[Sqrt[c]]]; Select[ Range[11000],sdnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2016 *)

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020

A306273 Numbers k such that k * rev(k) is a square, where rev=A004086, decimal reversal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 111, 121, 131, 141, 144, 151, 161, 169, 171, 181, 191, 200, 202, 212, 222, 232, 242, 252, 262, 272, 282, 288, 292, 300, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 400, 404, 414, 424, 434, 441, 444, 454, 464, 474, 484, 494, 500, 505, 515, 525, 528, 535
Offset: 1

Views

Author

Bernard Schott, Feb 02 2019

Keywords

Comments

The first nineteen terms are palindromes (cf. A002113). There are exactly seven different families of integers which together partition the terms of this sequence. See the file "Sequences and families" for more details, comments, formulas and examples.
From Chai Wah Wu, Feb 18 2019: (Start)
If w is a term with decimal representation a, then the number n corresponding to the string axa is also a term, where x is a string of k repeated digits 0 where k >= 0. The number n = w*10^(k+m)+w = w*(10^(k+m)+1) where m is the number of digits of w. Then R(n) = R(w)*10^(k+m)+R(w) = R(w)(10^(k+m)+1). Then n*R(n) = w*R(w)(10^(k+m)+1)^2 which is a square since w is a term.
The same argument shows that numbers corresponding to axaxa, axaxaxa, ... are also terms.
For example, since 528 is a term, so are 528528, 5280528, 52800528, 5280052800528, etc.
(End)

Examples

			One example for each family:
family 1 is A002113: 323 * 323 = 323^2;
family 2 is A035090: 169 * 961 = 13^2 * 31^2 = 403^2;
family 3 is A082994: 288 * 882 = (2*144) * (2*441) = 504^2;
family 4 is A002113(j) * 100^k: 75700 * 757 = 7570^2;
family 5 is A035090(j) * 100^k: 44100 * 144 = 2520^2;
family 6 is A082994(j) * 100^k: 8670000 * 768 = 81600^2;
family 7 is A323061(j) * 10^(2k+1): 5476580 * 856745 = 2166110^2.
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 88-89.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), p. 168.

Crossrefs

Cf. A083406, A083407, A083408, A117281 (Squares = k * rev(k) in at least two ways).

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= n -> issqr(n*revdigs(n)):
    select(filter, [$0..1000]);# Robert Israel, Feb 09 2019
  • Mathematica
    Select[Range[0, 535], IntegerQ@ Sqrt[# IntegerReverse@ #] &] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    isok(n) = issquare(n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Feb 04 2019

A338039 Numbers m such that A338038(m) = A338038(A004086(m)) where A004086(i) is i read backwards and A338038(i) is the sum of the primes and exponents in the prime factorization of i ignoring 1-exponents; palindromes and multiples of 10 are excluded.

Original entry on oeis.org

18, 81, 198, 576, 675, 819, 891, 918, 1131, 1304, 1311, 1818, 1998, 2262, 2622, 3393, 3933, 4031, 4154, 4514, 4636, 6364, 8181, 8749, 8991, 9478, 12441, 14269, 14344, 14421, 15167, 15602, 16237, 18018, 18449, 18977, 19998, 20651, 23843, 24882, 26677, 26892, 27225
Offset: 1

Views

Author

Michel Marcus, Oct 08 2020

Keywords

Comments

Palindromes (A002113) are excluded from the sequence because they obviously satisfy the condition.
Sequence is infinite since it includes 18, 1818, 181818, .... See link.
There are many cases of terms that are the repeated concatenation of integers like: 1818, 8181, 181818, ... , but also 131313131313131313131313131313 and more. See A338166.
If n is in the sequence and has d digits, and gcd(n, x) = gcd(A004086(n), x) where x = (10^((k+1)*d)-1)/(10^d-1), then the concatenation of k copies of n is also in the sequence. - Robert Israel, Oct 13 2020

Examples

			For m = 18 = 2*3^2, A338038(18) = 2 + (3+2) = 7 and for m = 81 = 3^4, A338038(81) = 7, so 18 and 81 are terms.
		

Crossrefs

Cf. A004086 (read n backwards), A002113, A029742 (non-palindromes), A338038, A338166.

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    g:= proc(n) local t;
      add(t[1]+t[2],t=subs(1=0,ifactors(n)[2]))
    end proc:
    filter:= proc(n) local r;
      if n mod 10 = 0 then return false fi;
      r:= rev(n);
      r <> n and g(r)=g(n)
    end proc:
    select(filter, [$1..30000]); # Robert Israel, Oct 13 2020
  • Mathematica
    s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Select[Range[30000], !Divisible[#, 10] && (r = IntegerReverse[#]) != # &&  s[#] == s[r] &] (* Amiram Eldar, Oct 08 2020 *)
  • PARI
    f(n) = my(f=factor(n)); vecsum(f[,1]) + sum(k=1, #f~, if (f[k,2]!=1, f[k,2])); \\ A338038
    isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (m % 10) && (m != r) && (f(r) == f(m));

A068637 a(n) = Max(n, R(n)), where R(n) (A004086) = digit reversal of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 31, 41, 51, 61, 71, 81, 91, 20, 21, 22, 32, 42, 52, 62, 72, 82, 92, 30, 31, 32, 33, 43, 53, 63, 73, 83, 93, 40, 41, 42, 43, 44, 54, 64, 74, 84, 94, 50, 51, 52, 53, 54, 55, 65, 75, 85, 95, 60, 61, 62, 63, 64, 65, 66, 76, 86, 96, 70, 71
Offset: 1

Views

Author

Amarnath Murthy, Feb 27 2002

Keywords

Comments

a(n) = A004186(n) for n <= 100. - Reinhard Zumkeller, Apr 03 2015

Examples

			a(12) = max(12,21) = 21. a(34632) = max(34632,23643) = 34632.
		

Crossrefs

Programs

  • Haskell
    a068637 n = max n $ a004086 n  -- Reinhard Zumkeller, Apr 03 2015
    
  • Maple
    a:= n-> max(n,(s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 22 2015
  • Mathematica
    Table[Max[n,IntegerReverse[n]],{n,100}] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jan 10 2016 *)
  • Python
    def A068637(n): return max(n,int(str(n)[::-1])) # Chai Wah Wu, Jun 26 2025

Extensions

Wrong a(13)=22 removed by Reinhard Zumkeller, Apr 03 2015

A070837 Smallest number k such that abs(k - R(k)) = 9n, where R(k) is digit reversal of k (A004086); or 0 if no such k exists.

Original entry on oeis.org

10, 13, 14, 15, 16, 17, 18, 19, 90, 1011, 100, 0, 0, 0, 0, 0, 0, 0, 0, 1021, 1090, 103, 0, 0, 0, 0, 0, 0, 0, 1031, 1080, 0, 104, 0, 0, 0, 0, 0, 0, 1041, 1070, 0, 0, 105, 0, 0, 0, 0, 0, 1051, 1060, 0, 0, 0, 106, 0, 0, 0, 0, 1061, 1050, 0, 0, 0, 0, 107, 0, 0, 0, 1071, 1040, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Comments

If 9n < 1000, k has at most 5 digits, and abs(k - R(k)) = 9n, then 10 must divide n. - Sascha Kurz, Jan 02 2003

Crossrefs

Programs

  • Mathematica
    a = Table[0, {50}]; Do[d = Abs[n - FromDigits[ Reverse[ IntegerDigits[n]]]] / 9; If[d < 51 && a[[d]] == 0, a[[d]] = n], {n, 1, 10^7}]; a
  • Python
    def back_difference(n):
        r = int(str(n)[::-1])
        return abs(r-n)
    def a070837(n):
        i = 0
        while True:
            if back_difference(i)==9*n:
                return i
            i+=1
    # Christian Perfect, Jul 23 2015

Extensions

More terms from Sascha Kurz, Jan 02 2003
a(21) corrected by Christian Perfect, Jul 23 2015

A071249 Numbers k such that gcd(k, R(k)) > 1, where R(k) (A004086) is the digit reversal of k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 18, 20, 21, 22, 24, 26, 27, 28, 30, 33, 36, 39, 40, 42, 44, 45, 46, 48, 50, 51, 54, 55, 57, 60, 62, 63, 64, 66, 68, 69, 70, 72, 75, 77, 78, 80, 81, 82, 84, 86, 87, 88, 90, 93, 96, 99, 101, 102, 105, 108, 110, 111, 114, 117, 120, 121
Offset: 1

Views

Author

Amarnath Murthy, May 21 2002

Keywords

Comments

Numbers k such that A055483(k) > 1. - Reinhard Zumkeller, Jun 18 2013

Crossrefs

Cf. A004086, A055483, A226778 (complement).

Programs

  • Haskell
    a071249 n = a071249_list !! (n-1)
    a071249_list = filter ((> 1) . a055483) [1..]
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    Select[ Range[125], GCD[ #, FromDigits[ Reverse[ IntegerDigits[ # ]]]] > 1 & ]

Extensions

Edited by Robert G. Wilson v, Jun 07 2002
Definition corrected by N. J. A. Sloane, Aug 27 2020 following a suggestion from José Hernández Santiago

A071273 Concatenation of R(n) (A004086) and n, omitting leading 0's.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1111, 2112, 3113, 4114, 5115, 6116, 7117, 8118, 9119, 220, 1221, 2222, 3223, 4224, 5225, 6226, 7227, 8228, 9229, 330, 1331, 2332, 3333, 4334, 5335, 6336
Offset: 1

Views

Author

Amarnath Murthy, Jun 07 2002

Keywords

Examples

			a(12) = 2112, a(1235) = 53211235
		

Crossrefs

Cf. A071274.

Programs

  • Mathematica
    Table[10^IntegerLength[n] IntegerReverse[n]+n,{n,40}] (* Harvey P. Dale, Mar 14 2023 *)

A072016 Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).

Original entry on oeis.org

2889, 3699, 3888, 3969, 4779, 4887, 5589, 5697, 5778, 5859, 5886, 5967, 6399, 6669, 6777, 6885, 6939, 7398, 7479, 7587, 7668, 7695, 7749, 7776, 7857, 7884, 7938, 7965, 8289, 8397, 8559, 8667, 8775, 8829, 8883, 8937, 9099, 9288, 9369, 9396, 9477, 9558, 9585
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Comments

Solutions to gcd(k, reverse(k)) = 1,3,9 (lower powers of 3) are trivial (see A072005).

Examples

			2889 = 107*3*3*3, 9889 = 3*3*3*3*2*61.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^4] | Gcd(n,Seqint(Reverse(Intseq(n)))) eq 27]; // Vincenzo Librandi, Jul 11 2018
  • Mathematica
    Select[Range[10^4], GCD[#, FromDigits[Reverse[IntegerDigits[#]]]] == 27 &] (* Vincenzo Librandi, Jul 11 2018 *)
  • PARI
    isok(n) = gcd(n, fromdigits(Vecrev(digits(n)))) == 27; \\ Michel Marcus, Jul 11 2018
    
Previous Showing 21-30 of 587 results. Next