A164955 Sequence obtained from Fibonacci numbers by taking the factorials of each digit and summing.
1, 1, 1, 2, 6, 120, 40320, 7, 3, 30, 240, 403200, 49, 14, 10086, 722, 408240, 368041, 40466, 40346, 6600, 363626, 10083, 46202, 41790, 5283, 362896, 403946, 45369, 363029, 40354, 364353, 408250, 45632, 90843, 368788, 363040, 50548, 807128, 404792, 281, 41308
Offset: 0
Examples
a(30) = 8!+3!+2!+0!+4!+0! = 40354 because Fibonacci(30) = 832040.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Dario Alpern, Factorization using the Elliptic Curve Method
Programs
-
Maple
a:= n-> add(i!, i=convert((<<0|1>, <1|1>>^n)[1,2], base, 10)): seq(a(n), n=0..42); # Alois P. Heinz, Jul 09 2023
-
Mathematica
Total[IntegerDigits[#]!]&/@Fibonacci[Range[0,40]] (* Harvey P. Dale, May 03 2011 *)
Formula
Extensions
Offset corrected and more terms from Alois P. Heinz, Jul 09 2023
Comments