cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A241579 Square array read by antidiagonals downwards: T(n,k) = Sum_{j=1..k} n^(k-j)*Stirling_2(k,j) (n >= 0, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 15, 11, 4, 1, 1, 52, 49, 19, 5, 1, 1, 203, 257, 109, 29, 6, 1, 1, 877, 1539, 742, 201, 41, 7, 1, 1, 4140, 10299, 5815, 1657, 331, 55, 8, 1, 1, 21147, 75905, 51193, 15821, 3176, 505, 71, 9, 1, 1, 115975, 609441, 498118, 170389, 35451, 5497, 729, 89, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2014

Keywords

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...
1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, 5284451, 49134923, 487026929, ...
1, 4, 19, 109, 742, 5815, 51193, 498118, 5296321, 60987817, 754940848, 9983845261, ...
1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, ...
1, 6, 41, 331, 3176, 35451, 447981, 6282416, 96546231, 1611270851, 28985293526, 558413253581, ...
1, 7, 55, 505, 5497, 69823, 1007407, 16157905, 284214097, 5432922775, 112034017735, 2476196276617, ...
1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, ...
...
		

Crossrefs

Three versions of this array are A111673, A241578, A241579.

Programs

  • Maple
    with(combinat):
    T:=(n,k)->add(n^(k-j)*stirling2(k,j),j=1..k);
    r:=n->[seq(T(n,k),k=1..12)];
    for n from 0 to 8 do lprint(r(n)); od:

A261275 Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0

Views

Author

Mark Wildon, Aug 13 2015

Keywords

Comments

C_t(n) is the number of sequences of t top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.
C_t(n) = where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C_t(n) using sequences of box moves on pairs of Young diagrams.
C_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks.
C_t(n) = C_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2,    3;
  0,  4,   10,   11;
  0,  8,   36,   48,   49;
  0, 16,  136,  236,  256,   257;
  0, 32,  528, 1248, 1508,  1538,  1539;
  0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
  ...
		

Crossrefs

Columns n=0,1,2,3 give A000007, A000079, A007582, A233162 (proved for n=3 in reference above).
Main diagonal gives A004211.
Cf. A075497.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 13 2015
  • Mathematica
    CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
    Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

G.f.: sum(t>=0, n>=0, C_t(n)x^t/t!y^n) = exp(y/2 (exp(2*x)-1))/(1-y).
C_t(n) = Sum_{i=0..n} A075497(t,i).

A331610 Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).

Original entry on oeis.org

1, 1, 3, 15, 97, 777, 7379, 80983, 1007137, 13986289, 214383171, 3593224767, 65347120705, 1281151315641, 26928292883795, 603928982033863, 14392387319349697, 363135896514611041, 9669298448057196291, 270932711729869233903, 7967970654277850949025
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Maple
    S:= series(exp(1/(1-tan(x))-1), x, 31):
    seq(coeff(S,x,i)*i!, i=0..30); # Robert Israel, Dec 10 2024
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(sin(x) / (cos(x) - sin(x))).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * 2^(k-1) * A000111(k) * a(n-k).
a(n) ~ 2^(2*n - 1/4) * exp(1/Pi - 1/2 + 2^(3/2)*sqrt(n/Pi) - n) * n^(n - 1/4) / Pi^(n + 1/4). - Vaclav Kotesovec, Jan 27 2020

A111579 Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 15, 6, 2, 1, 1, 32, 52, 24, 7, 2, 1, 1, 64, 203, 116, 35, 8, 2, 1, 1, 128, 877, 648, 214, 48, 9, 2, 1, 1, 256, 4140, 4088, 1523, 352, 63, 10, 2, 1, 1, 512, 21147, 28640, 12349, 3008, 536, 80, 11, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

Triangles of generalized Stirling numbers of the second kind may be defined by recurrences T(n,k) = T(n-1,k-1) + Q*T(n-1,k) initialized by T(0,0)=T(1,0)=T(1,1)=1. Q=1 generates Pascal's triangle A007318,
Q=k+1 generates A008277, Q=2k+1 generates A039755, Q=3k+1 generates A111577, Q=4k+1 generates A111578, Q=5k+1 generates A166973.
(These definitions assume row and column enumeration 0<=n, 0<=k<=n.)
Each of these triangles characterized by Q=(c-1)*k+1 has row sums sum_{k=0..n} T(n,k), which define the column A(.,c).

Crossrefs

Programs

  • Maple
    T := proc(n,k,c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1,c)+((c-1)*k+1)*procname(n-1,k,c) ; fi; end:
    A111579 := proc(r,c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n,k,c),k=0..n) ; end if; end:
    seq(seq(A111579(r,c),c=0..r),r=0..10) ; # R. J. Mathar, Oct 30 2009
  • Mathematica
    T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];
    A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];
    Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)

Formula

A(r=n+c,c) = sum_{k=0..n} T(n,k,c), 0<=c<=r where T(n,k,c) = T(n-1,k-1,c) + ((c-1)*k+1)*T(n-1,k,c).
A(r,0) = 1.
A(r,1) = 2^(r-1).
A(r,2) = A000110(r-1).
A(r,3) = A007405(r-3).

Extensions

Edited by R. J. Mathar, Oct 30 2009

A166922 E.g.f. exp(-x)*exp(exp(2*x)/2-1/2)/2 + 1/2.

Original entry on oeis.org

1, 0, 1, 2, 10, 48, 276, 1768, 12552, 97408, 818704, 7396384, 71380640, 732058880, 7943068992, 90833753728, 1091134058624, 13728139694080, 180436251140352, 2471790031618560
Offset: 0

Views

Author

Karol A. Penson, Oct 23 2009

Keywords

Comments

In general, if m >= 1, b <> 0 and e.g.f. = exp(m*exp(b*x) + r*x + s) then a(n) ~ b^n * n^(n + r/b) * exp(n/LambertW(n/m) - n + s) / (m^(r/b) * sqrt(1 + LambertW(n/m)) * LambertW(n/m)^(n + r/b)). - Vaclav Kotesovec, Jun 28 2022

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[-t]*Exp[Exp[2*t]/2 - 1/2]/2 + 1/2, {t, 0, nn}], t] Range[0, nn]!] (* G. C. Greubel, May 28 2016 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(-x)*exp(exp(2*x)/2-1/2)/2+1/2)) \\ Joerg Arndt, May 06 2013
  • Sage
    def A166922_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*(k*(b+c)+c)
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u/2)
        return R
    A166922_list(20)
    # Peter Luschny, Nov 01 2012
    

Formula

A004211(n) = -1 + 2*sum(k=0..n, C(n,k)*a(k)). - Peter Luschny, Nov 01 2012
G.f.: 1/2 + 1/2/Q(0), where Q(k)= 1 - 2*x*k - 2*x^2*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 06 2013
a(n) ~ 2^(n - 3/2) * n^(n - 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022

Extensions

Definition corrected on a suggestion of M. F. Hasler, Peter Luschny, Nov 05 2012

A337011 a(n) = 2^n * exp(-1/2) * Sum_{k>=0} (k + 2)^n / (2^k * k!).

Original entry on oeis.org

1, 5, 27, 159, 1025, 7221, 55307, 457631, 4065569, 38566021, 388757083, 4146851583, 46636281185, 551163837685, 6825500514059, 88341860285631, 1192267628956353, 16743728349797765, 244221140242647579, 3693367920926321375, 57821628101627115329
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2020

Keywords

Crossrefs

Programs

  • Maple
    E:= exp(4*x+exp(2*x)/2-1/2):
    S:= series(E,x,31):
    seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, Aug 14 2020
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[4 x + (Exp[2 x] - 1)/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 5 a[n - 1] + Sum[Binomial[n - 1, k - 1] 2^(k - 1) a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(4*x + (exp(2*x) - 1) / 2).
a(0) = 1; a(n) = 5 * a(n-1) + Sum_{k=2..n} binomial(n-1,k-1) * 2^(k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(n-k) * A004211(k).

A351342 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 27, 83, 271, 971, 3865, 16879, 78985, 388385, 1987201, 10561385, 58443891, 337724057, 2040085491, 12862712499, 84357800063, 573182197539, 4021203303593, 29062345301487, 216129411635057, 1653180368063361, 13003920016983361, 105158133803473329
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 3 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 3, 1, Sum[Binomial[n - 3, k] 2^k a[n - k - 3], {k, 0, n - 3}]]; Table[a[n], {n, 0, 27}]

Formula

a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * 2^k * a(n-k-3).

A351343 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 9, 27, 81, 245, 761, 2493, 8849, 34519, 147057, 670327, 3198561, 15732905, 79174929, 407127897, 2145061729, 11635963499, 65309080185, 380583443187, 2304629301041, 14475031232285, 93943897651017, 627220447621973, 4290783719133041, 29988917377046207
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 4 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 4, k] 2^k a[n - k - 4], {k, 0, n - 4}]]; Table[a[n], {n, 0, 29}]

Formula

a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-4,k) * 2^k * a(n-k-4).

A351344 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 9, 27, 81, 243, 731, 2223, 6939, 22727, 79971, 306929, 1282815, 5744361, 26984415, 130656409, 644739377, 3224303841, 16318576681, 83717193681, 436948772697, 2331807007139, 12791837178265, 72472130039123, 425239734375217, 2584950704996379
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 5 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 5, 1, Sum[Binomial[n - 5, k] 2^k a[n - k - 5], {k, 0, n - 5}]]; Table[a[n], {n, 0, 30}]

Formula

a(0) = ... = a(4) = 1; a(n) = Sum_{k=0..n-5} binomial(n-5,k) * 2^k * a(n-k-5).

A351345 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 9, 27, 81, 243, 729, 2189, 6601, 20141, 63009, 205989, 718905, 2720543, 11183601, 49321367, 228895201, 1097860903, 5371546897, 26598018425, 132755261681, 667027581401, 3376011676481, 17249045903945, 89270689572497, 470069622480667
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 6 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 31; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 6, 1, Sum[Binomial[n - 6, k] 2^k a[n - k - 6], {k, 0, n - 6}]]; Table[a[n], {n, 0, 31}]

Formula

a(0) = ... = a(5) = 1; a(n) = Sum_{k=0..n-6} binomial(n-6,k) * 2^k * a(n-k-6).
Previous Showing 31-40 of 58 results. Next