cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A007692 Numbers that are the sum of 2 nonzero squares in 2 or more ways.

Original entry on oeis.org

50, 65, 85, 125, 130, 145, 170, 185, 200, 205, 221, 250, 260, 265, 290, 305, 325, 338, 340, 365, 370, 377, 410, 425, 442, 445, 450, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 578, 580, 585, 610, 625, 629, 650, 680, 685, 689, 697, 725, 730, 740, 745, 754, 765
Offset: 1

Views

Author

Keywords

Comments

A025426(a(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
For the question that is in the link AskNRICH Archive: It is easy to show that (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2 = (a*d + b*c)^2 + (a*c - b*d)^2. So terms of this sequence can be generated easily. 5 is the least number of the form a^2 + b^2 where a and b distinct positive integers and this is a list sequence. This is the why we observe that there are many terms which are divisible by 5. - Altug Alkan, May 16 2016
Square roots of square terms: {25, 50, 65, 75, 85, 100, 125, 130, 145, 150, 169, 170, 175, 185, 195, 200, 205, 221, 225, 250, 255, 260, 265, 275, 289, 290, 300, 305, ...}. They are also listed by A009177. - Michael De Vlieger, May 16 2016

Examples

			50 is a term since 1^2 + 7^2 and 5^2 + 5^2 equal 50.
25 is not a term since though 3^2 + 4^2 = 25, 25 is square, i.e., 0^2 + 5^2 = 25, leaving it with only one possible sum of 2 nonzero squares.
625 is a term since it is the sum of squares of {0,25}, {7,24}, and {15,20}.
		

References

  • Ming-Sun Li, Kathryn Robertson, Thomas J. Osler, Abdul Hassen, Christopher S. Simons and Marcus Wright, "On numbers equal to the sum of two squares in more than one way", Mathematics and Computer Education, 43 (2009), 102 - 108.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 125.

Crossrefs

Subsequence of A001481. A subsequence is A025285 (2 ways).

Programs

  • Haskell
    import Data.List (findIndices)
    a007692 n = a007692_list !! (n-1)
    a007692_list = findIndices (> 1) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Mathematica
    Select[Range@ 800, Length@ Select[PowersRepresentations[#, 2, 2], First@ # != 0 &] > 1 &] (* Michael De Vlieger, May 16 2016 *)
  • PARI
    isA007692(n)=nb = 0; lim = sqrtint(n); for (x=1, lim, if ((n-x^2 >= x^2) && issquare(n-x^2), nb++); ); nb >= 2; \\ Altug Alkan, May 16 2016
    
  • PARI
    is(n)=my(t); if(n<9, return(0)); for(k=sqrtint(n\2-1)+1,sqrtint(n-1), if(issquare(n-k^2)&&t++>1, return(1))); 0 \\ Charles R Greathouse IV, Jun 08 2016

A018825 Numbers that are not the sum of 2 nonzero squares.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 81, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A022544, A081324, A000404 (complement), A004431.

Programs

  • Haskell
    import Data.List (elemIndices)
    a018825 n = a018825_list !! (n-1)
    a018825_list = tail $ elemIndices 0 a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA000404 := proc(n)
        local x,y ;
        for x from 1 do
            if x^2> n then
                return false;
            end if;
            for y from 1 do
                if x^2+y^2 > n then
                    break;
                elif x^2+y^2 = n then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    A018825 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if not isA000404(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A018825(n),n=1..30) ; # R. J. Mathar, Jul 28 2014
  • Mathematica
    q=13;q2=q^2+1;lst={};Do[Do[z=a^2+b^2;If[z<=q2,AppendTo[lst,z]],{b,a,1,-1}],{a,q}];lst; u=Union@lst;Complement[Range[q^2],u] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
  • PARI
    is(n)=my(f=factor(n), t=prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1)))); if(t!=1, return(!t)); for(k=sqrtint((n-1)\2)+1, sqrtint(n-1), if(issquare(n-k^2), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A025426(a(n)) = 0; A063725(a(n)) = 0. - Reinhard Zumkeller, Aug 16 2011

A004433 Numbers that are the sum of 4 distinct nonzero squares: of form w^2+x^2+y^2+z^2 with 0

Original entry on oeis.org

30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137
Offset: 1

Views

Author

Keywords

Examples

			30 = 1^2+2^2+3^2+4^2.
		

Crossrefs

Programs

  • Haskell
    a004433 n = a004433_list !! (n-1)
    a004433_list = filter (p 4 $ tail a000290_list) [1..] where
       p k (q:qs) m = k == 0 && m == 0 ||
                      q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
    -- Reinhard Zumkeller, Apr 22 2013
    
  • Mathematica
    data = Flatten[ DeleteCases[ FindInstance[ w^2 + x^2 + y^2 + z^2 == # && 0 < w < x < y < z < #, {w, x, y, z}, Integers] & /@ Range[137], {}], 1]; w^2 + x^2 + y^2 + z^2 /. data (* Ant King, Oct 17 2010 *)
    Select[Union[Total[#^2]&/@Subsets[Range[10],{4}]],#<=137&] (* Harvey P. Dale, Jul 03 2011 *)
  • PARI
    list(lim)=my(v=List([30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 153, 154, 155, 156]), u=[160, 168, 172, 176, 188, 192, 208, 220, 224, 232, 240, 256, 268, 272, 288, 292, 304, 320, 328, 352, 368, 384, 388, 400, 412, 416, 432, 448, 496, 512, 528, 544, 576, 592, 608], t=1); if(lim<156, return(select(k->k<=lim, Vec(v)))); for(n=158,lim\1, if(n#u, t=1)); Vec(v) \\ Charles R Greathouse IV, Jan 08 2025

Formula

{n: A025443(n) >=1}. Union of A025386 and A025376. - R. J. Mathar, Jun 15 2018
a(n) = n + O(log n). - Charles R Greathouse IV, Jan 08 2025

A256418 Congrua (possible solutions to the congruum problem): numbers k such that there are integers x, y and z with k = x^2-y^2 = z^2-x^2.

Original entry on oeis.org

24, 96, 120, 216, 240, 336, 384, 480, 600, 720, 840, 864, 960, 1080, 1176, 1320, 1344, 1536, 1920, 1944, 2016, 2160, 2184, 2400, 2520, 2880, 2904, 3000, 3024, 3360, 3456, 3696, 3840, 3960, 4056, 4320, 4704, 4896, 5280, 5376, 5400, 5544
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2015, following a suggestion from Robert Israel, Apr 03 2015

Keywords

Comments

k is a "congruum" iff k/4 is the area of a Pythagorean triangle, so these are the numbers 4*A009112.
Each congruum is a multiple of 24; it cannot be a square.
This entry incorporates many comments that were originally in A057102. A057103 and A055096 need to be checked.

Examples

			a(11)=840 since 840=29^2-1^2=41^2-29^2 (indeed also 840=37^2-23^2=47^2-37^2).
		

Crossrefs

Cf. A004431 for possible values of x in definition. Cf. A057103, A055096 for triangles of all congrua and values of x.

Programs

  • Mathematica
    r[n_] := Reduce[0 < y < x && 0 < x < z && n == x^2 - y^2 == z^2 - x^2, {x, y, z}, Integers];
    Reap[For[n = 24, n < 10^4, n += 24, rn = r[n]; If[rn =!= False, Print[n, " ", rn]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2019 *)

A118882 Numbers which are the sum of two squares in two or more different ways.

Original entry on oeis.org

25, 50, 65, 85, 100, 125, 130, 145, 169, 170, 185, 200, 205, 221, 225, 250, 260, 265, 289, 290, 305, 325, 338, 340, 365, 370, 377, 400, 410, 425, 442, 445, 450, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 578, 580, 585, 610, 625, 629, 650, 676, 680
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime factorization includes at least two primes (not necessarily distinct) congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. Products of two values in A004431.
Squares of distances that are the distance between two points in the square lattice in two or more nontrivially different ways. A quadrilateral with sides a,b,c,d has perpendicular diagonals iff a^2+c^2 = b^2+d^2. This sequence is the sums of the squares of opposite sides of such quadrilaterals, excluding kites (a=b,c=d), but including right triangles (the degenerate case d=0).

Examples

			50 = 7^2 + 1^2 = 5^2 + 5^2, so 50 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a118882 n = a118882_list !! (n-1)
    a118882_list = findIndices (> 1) a000161_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Mathematica
    Select[Range[1000], Length[PowersRepresentations[#, 2, 2]] > 1&] (* Jean-François Alcover, Mar 02 2019 *)
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A118882_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            if 1>1):
                yield n
    A118882_list = list(islice(A118882_gen(),30)) # Chai Wah Wu, Sep 09 2022

Formula

A000161(a(n)) > 1. [Reinhard Zumkeller, Aug 16 2011]

A001983 Numbers that are the sum of 2 distinct squares: of form x^2 + y^2 with 0 <= x < y.

Original entry on oeis.org

1, 4, 5, 9, 10, 13, 16, 17, 20, 25, 26, 29, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 73, 74, 80, 81, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160, 164
Offset: 1

Views

Author

Keywords

Comments

This sequence lists the values of A000404(n)/2 when A000404(n) is an even number. In other words, sequence lists integers n that are the average of two nonzero squares. - Altug Alkan, May 26 2016

Crossrefs

Cf. A000404, subsequence of A001481, A004435 (complement), A025435, A004431.
Union of A000290 and A004431 excluding 0.

Programs

  • Haskell
    a001983 n = a001983_list !! (n-1)
    a001983_list = [x | x <- [0..], a025435 x > 0]
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    upto=200;max=Floor[Sqrt[upto]];s=Total/@((Subsets[Range[0,max], {2}])^2);Union[Select[s,#<=upto&]]  (* Harvey P. Dale, Apr 01 2011 *)
    selQ[n_] := Select[ PowersRepresentations[n, 2, 2], 0 <= #[[1]] < #[[2]] &] != {}; Select[Range[200], selQ] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    list(lim)=my(v=List()); for(x=0,sqrtint(lim\4), for(y=x+1, sqrtint(lim\1-x^2), listput(v, x^2+y^2))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

Formula

A025435(a(n)) > 0. - Reinhard Zumkeller, Dec 20 2013

A024507 Numbers that are the sum of 2 distinct nonzero squares (with repetition).

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 65, 68, 73, 74, 80, 82, 85, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 125, 130, 130, 136, 137, 145, 145, 146, 148, 149, 153, 157, 160, 164, 169, 170, 170, 173, 178, 180, 181, 185, 185, 193
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A009000, A009003, A024507, A004431 (duplicates removed), A055096.

Programs

  • Mathematica
    nn=10000;A024507=Table[x^2+y^2,{x,Sqrt[nn]},{y,x+1,Sqrt[nn-x^2]}]//Flatten//Sort (* Zak Seidov, Apr 07 2011*)

Extensions

Name edited by Zak Seidov, Apr 08 2011

A004434 Numbers that are the sum of 5 distinct nonzero squares.

Original entry on oeis.org

55, 66, 75, 79, 82, 87, 88, 90, 94, 95, 99, 100, 103, 106, 110, 111, 114, 115, 118, 120, 121, 123, 126, 127, 129, 130, 131, 132, 134, 135, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a004434 n = a004434_list !! (n-1)
    a004434_list = filter (p 5 $ tail a000290_list) [1..] where
       p k (q:qs) m = k == 0 && m == 0 ||
                      q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
    -- Reinhard Zumkeller, Apr 22 2013
  • PARI
    upto(lim)=my(v=List(), tb, tc, td, te); for(a=5, sqrt(lim), for(b=4, min(a-1, sqrt(lim-a^2)), tb=a^2+b^2; for(c=3, min(b-1, sqrt(lim-tb)), tc=tb+c^2; for(d=2, min(c-1, sqrt(lim-tc)), td=tc+d^2; for(e=1, d-1, te=td+e^2; if(te>lim, break,listput(v, te))))))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jul 17 2011
    

Formula

a(n) = n + 124 for n > 121. - Charles R Greathouse IV, Jul 17 2011

A009177 Numbers that are the hypotenuses of more than one Pythagorean triangle.

Original entry on oeis.org

25, 50, 65, 75, 85, 100, 125, 130, 145, 150, 169, 170, 175, 185, 195, 200, 205, 221, 225, 250, 255, 260, 265, 275, 289, 290, 300, 305, 325, 338, 340, 350, 365, 370, 375, 377, 390, 400, 410, 425, 435, 442, 445, 450, 455, 475, 481, 485, 493, 500, 505, 507, 510, 520, 525
Offset: 1

Views

Author

Keywords

Comments

Also, hypotenuses of Pythagorean triangles in Pythagorean triples (a, b, c, a < b < c) such that a and b are the hypotenuses of Pythagorean triangles, where the Pythagorean triples (x1, y1, a) and (x2, y2, b) are similar triangles. Sequence gives c values. - Naohiro Nomoto
Any multiple of a term of this sequence is also a term. The primitive elements are the products of two primes, not necessarily distinct, that are == 1 (mod 4): A121387. - Franklin T. Adams-Watters, Dec 21 2015
Numbers appearing more than once in A009000. - Sean A. Irvine, Apr 20 2018

Examples

			25^2 = 24^2 + 7^2 = 20^2 + 15^2.
E.g., (a = 15, b = 20, c = 25, a^2 + b^2=c^2); 15 and 20 are the hypotenuses of Pythagorean triangles. The Pythagorean triples (9, 12, 15) and (12, 16, 20) are similar triangles. So c = 25 is in the sequence. - _Naohiro Nomoto_
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) add(`if` (t[1] mod 4 = 1, t[2],0), t = ifactors(n)[2]) >= 2 end proc:
    select(filter, [$1..1000]); # Robert Israel, Dec 21 2015
  • Mathematica
    f[n_] := Module[{i = 0, k = 0}, Do[If[Sqrt[n^2 - i^2] == IntegerPart[Sqrt[n^2 - i^2]], k++], {i, n - 1, 1, -1}]; k];
    lst = {}; Do[If[f[n] > 2, AppendTo[lst, n]], {n, 4*5!}];
    lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Of the form b(i)*b(j)*k, where b(n) is A004431(n). Numbers whose prime factorization includes at least 2 (not necessarily distinct) primes congruent to 1 mod 4. - Franklin T. Adams-Watters, May 03 2006. [Typo corrected by Ant King, Jul 17 2008]

A081324 Twice a square but not the sum of 2 distinct squares.

Original entry on oeis.org

0, 2, 8, 18, 32, 72, 98, 128, 162, 242, 288, 392, 512, 648, 722, 882, 968, 1058, 1152, 1458, 1568, 1922, 2048, 2178, 2592, 2888, 3528, 3698, 3872, 4232, 4418, 4608, 4802, 5832, 6272, 6498, 6962, 7688, 7938, 8192, 8712, 8978, 9522, 10082, 10368, 11552
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Conjecture: for n>1 this is A050804.
From Altug Alkan, Apr 12 2016: (Start)
Conjecture is true. Proof :
If n = a^2 + b^2, where a and b are nonzero integers, then n^3 = (a^2 + b^2)^3 = A^2 + B^2 = C^2 + D^2 where;
A = 2*a^2*b + (a^2-b^2)*b = 3*a^2*b - b^3,
B = 2*a*b^2 - (a^2-b^2)*a = 3*a*b^2 - a^3,
C = 2*a*b^2 + (a^2-b^2)*a = 1*a*b^2 + a^3,
D = 2*a^2*b - (a^2-b^2)*b = 1*a^2*b + b^3.
Obviously, A, B, C, D are always nonzero because a and b are nonzero integers. Additionally, if a^2 is not equal to b^2, then (A, B) and (C, D) are distinct pairs, that is, n^3 can be expressible as a sum of two nonzero squares more than one way. Since we know that n is a sum of two nonzero squares if and only if n^3 is a sum of two nonzero squares (see comment section of A000404); if n^3 is the sum of two nonzero squares in exactly one way, n must be a^2 + b^2 with a^2 = b^2 and n is the sum of two nonzero squares in exactly one way. That is the definition of this sequence, so this sequence is exactly A050804 except "0" that is the first term of this sequence. (End) [Edited by Altug Alkan, May 14 2016]
Conjecture: sequence consists of numbers of form 2*k^2 such that sigma(2*k^2)==3 (mod 4) and k is not divisible by 5.
The reason of related observation is that 5 is the least prime of the form 4*m+1. However, counterexamples can be produced. For example 57122 = 2*169^2 and sigma(57122) == 3 (mod 4) and it is not divisible by 5. - Altug Alkan, Jun 10 2016
For n > 0, this sequence lists numbers n such that n is the sum of two nonzero squares while n^2 is not. - Altug Alkan, Apr 11 2016
2*k^2 where k has no prime factor == 1 (mod 4). - Robert Israel, Jun 10 2016

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a081324 n = a081324_list !! (n-1)
    a081324_list = 0 : elemIndices 1 a063725_list
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Maple
    map(k -> 2*k^2, select(k -> andmap(t -> t[1] mod 4 <> 1, ifactors(k)[2]), [$0..100])); # Robert Israel, Jun 10 2016
  • Mathematica
    Select[ Range[0, 12000], MatchQ[ PowersRepresentations[#, 2, 2], {{n_, n_}}] &] (* Jean-François Alcover, Jun 18 2013 *)
  • PARI
    concat([0,2],apply(n->2*n^2, select(n->vecmin(factor(n)[, 1]%4)>1, vector(100,n,n+1)))) \\ Charles R Greathouse IV, Jun 18 2013

Formula

A063725(a(n)) = 1. [Reinhard Zumkeller, Aug 17 2011]
a(n) = 2*A004144(n-1)^2 for n > 1. - Charles R Greathouse IV, Jun 18 2013

Extensions

a(19)-a(45) from Donovan Johnson, Nov 15 2009
Offset corrected by Reinhard Zumkeller, Aug 17 2011
Previous Showing 21-30 of 74 results. Next