cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A134961 Erroneous version of A024507.

Original entry on oeis.org

5, 10, 13, 17, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 65, 68, 73, 74, 80, 82, 85, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 125, 130, 130, 136, 137, 145, 145, 146, 148, 149, 153, 157, 160, 164, 169, 170, 170
Offset: 1

Views

Author

Keywords

Comments

Previous name was: "Ordered hypotenuses of imprimitive Pythagorean triangles. Imprimitive analog of A020882."
Let b > a > 0 be integers. Then (b^2 - a^2, 2*b*a, b^2 + a^2) is a Pythagorean triple. This sequence lists the ordered values of b^2 + a^2 including duplicates. Once the missing 20 is included, this becomes a duplicate of A024507. - Michael Somos, Nov 22 2019

A004431 Numbers that are the sum of 2 distinct nonzero squares.

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 73, 74, 80, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 197
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime factorization includes at least one prime congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. - Franklin T. Adams-Watters, May 03 2006
Reordering of A055096 by increasing values and without repetition. - Paul Curtz, Sep 08 2008
A063725(a(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
The square of these numbers is also the sum of two nonzero squares, so this sequence is a subsequence of A009003. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. Primitive elements are those with exactly one prime factor congruent to 1 mod 4 with multiplicity one (A230779). - Jean-Christophe Hervé, Nov 10 2013
From Bob Selcoe, Mar 23 2016: (Start)
Numbers c such that there is d < c, d >= 1 where c + d and c - d are square. For example, 53 + 28 = 81, 53 - 28 = 25.
Given a prime p == 1 mod 4, a term appears if and only if it is of the form p^i, p*2^j or p*k^2 {i,j,k >= 1}, or a product of any combination of these forms. Therefore, the products of any terms to any powers also are terms. For example, p(1) = 5 and p(2) = 13 so term 45 appears because 5*3^2 = 45 and term 416 appears because 13*2^5 = 416; therefore 45 * 416 = 18720 appears, as does 45^3 * 416^11 = 18720^3 * 416^8.
Numbers of the form j^2 + 2*j*k + 2*k^2 {j,k >= 1}. (End)
Suppose we have a term t = x^2 + y^2. Then s^2*t = (s*x)^2 + (s*y)^2 is a term for any s > 0. Also 2*t = (y+x)^2 + (x-y)^2 is a term. It follows that q*s^2*t is a term for any s > 0 and q=1 or 2. Examples: 2*7^2*26 = 28^2 + 42^2; 6^2*17 = 6^2 + 24^2. - Jerzy R Borysowicz, Aug 11 2017
To find terms up to some upper bound u, we can search for x^2 + y^2 = t where x is odd and y is even. Then we add all numbers of the form 2^m * t <= u and then remove duplicates. - David A. Corneth, Oct 04 2017
From Bernard Schott, Apr 13 2022: (Start)
The 5th comment "Closed under multiplication" can be proved with Brahmagupta's identity: (a^2+b^2) * (c^2+d^2) = (ac + bd)^2 + (ad - bc)^2.
The subsequence of primes is A002144. (End)

Examples

			53 = 7^2 + 2^2, so 53 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a004431 n = a004431_list !! (n-1)
    a004431_list = findIndices (> 1) a063725_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA004431 := proc(n)
        local a,b ;
        for a from 2 do
            if a^2>= n then
                return false;
            end if;
            b := n -a^2 ;
            if b < 1 then
                return false ;
            end if;
            if issqr(b) then
                if ( sqrt(b) <> a ) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    A004431 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+1 do
                if isA004431(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jan 29 2013
  • Mathematica
    A004431 = {}; Do[a = 2 m * n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[A004431, c], {m, 100}, {n, m - 1}]; Take[Union@A004431, 63] (* Robert G. Wilson v, May 02 2009 *)
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {{0, } -> Nothing, {a, b_} /; a == b -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    select( isA004431(n)={n>1 && vecmin((n=factor(n)%4)[,1])==1 && ![f[1]>2 && f[2]%2 | f<-n~]}, [1..199]) \\ M. F. Hasler, Feb 06 2009, updated Nov 24 2019
    
  • PARI
    is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1
    for(n=1, 1e3, if(is(n), print1(n, ", "))) \\ Altug Alkan, Dec 06 2015
    
  • PARI
    upto(n) = {my(res = List(), s); forstep(i=1, sqrtint(n), 2, forstep(j = 2, sqrtint(n - i^2), 2, listput(res, i^2 + j^2))); s = #res; for(i = 1, s, t = res[i]; for(e = 1, logint(n \ res[i], 2), listput(res, t<<=1))); listsort(res, 1); res} \\ David A. Corneth, Oct 04 2017
    
  • Python
    def aupto(limit):
      s = [i*i for i in range(1, int(limit**.5)+2) if i*i < limit]
      s2 = set(a+b for i, a in enumerate(s) for b in s[i+1:] if a+b <= limit)
      return sorted(s2)
    print(aupto(197)) # Michael S. Branicky, May 10 2021

A009000 Ordered hypotenuse numbers (squares are sums of 2 distinct nonzero squares).

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 25, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 50, 51, 52, 53, 55, 58, 60, 61, 65, 65, 65, 65, 68, 70, 73, 74, 75, 75, 78, 80, 82, 85, 85, 85, 85, 87, 89, 90, 91, 95, 97, 100, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120
Offset: 1

Views

Author

Keywords

Comments

The largest member 'c' of the Pythagorean triples (a,b,c) ordered by increasing c.
If c^2 = a^2 + b^2 (a < b < c) then c^2 = (n^2 + m^2)/2 with n = b - a, m = b + a. - Zak Seidov, Mar 03 2011
Numbers n such that A083025(n) > 0, i.e., n is divisible by at least one prime of the form 4k+1. - Max Alekseyev, Oct 24 2008
A number appears only once in the sequence if and only if it is divisible by exactly one prime of the form 4k+1 with multiplicity one (cf. A084645). - Jean-Christophe Hervé, Nov 11 2013
If c^2 = a^2 + b^2 with a and b > 0, then a <> b: the sum of 2 equal squares cannot be a square because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 11 2013

References

  • W. L. Schaaf, Recreational Mathematics, A Guide To The Literature, "The Pythagorean Relationship", Chapter 6 pp. 89-99 NCTM VA 1963.
  • W. L. Schaaf, A Bibliography of Recreational Mathematics, Vol. 2, "The Pythagorean Relation", Chapter 6 pp. 108-113 NCTM VA 1972.
  • W. L. Schaaf, A Bibliography of Recreational Mathematics, Vol. 3, "Pythagorean Recreations", Chapter 6 pp. 62-6 NCTM VA 1973.

Crossrefs

Programs

  • Maple
    A009000:=proc(N) # To get all terms <= N
        local p,q,i,L;
        L:=[];
        for p from 2 to floor(sqrt(N-1)) do
            for q to p-1 do
                if igcd(p,q)=1 and is(p-q,odd) then
                    L:=[op(L),seq(i*(p^2+q^2),i=1..N/(p^2+q^2))];
                fi
            od
        od;
        return op(sort(L))
    end proc:
    A009000(120); # Felix Huber, Feb 10 2025
  • Mathematica
    max = 120; hypotenuseQ[n_] := For[k = 1, True, k++, p = Prime[k]; Which[Mod[p, 4] == 1 && Divisible[n, p], Return[True], p > n, Return[False]]]; hypotenuses = Select[Range[max], hypotenuseQ]; red[c_] := {a, b, c} /. {ToRules[ Reduce[0 < a <= b && a^2 + b^2 == c^2, {a, b}, Integers]]}; A009000 = Flatten[red /@ hypotenuses, 1][[All, -1]] (* Jean-François Alcover, May 23 2012, after Max Alekseyev *)
    Sqrt[#]&/@Flatten[Table[Total/@Select[IntegerPartitions[n^2,{2}],Length[Union[#]]==2&&AllTrue[Sqrt[#],IntegerQ]&],{n,150}]] (* Harvey P. Dale, May 25 2025 *)
  • PARI
    list(lim)=my(v=List(),m2,s2,h2,h); for(middle=4,lim-1, m2=middle^2; for(small=1,middle, s2=small^2; if(issquare(h2=m2+s2,&h), if(h>lim, break); listput(v, h)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 23 2017
    
  • PARI
    list(lim) = {my(lh = List()); for(u = 2, sqrtint(lim), for(v = 1, u, if (u^2+v^2 > lim, break); if ((gcd(u,v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u^2+v^2) > lim, break); /* if (u^2 - v^2 < 2*u*v, w = [i*(u^2 - v^2), i*2*u*v, i*(u^2+v^2)], w = [i*2*u*v, i*(u^2 - v^2), i*(u^2+v^2)]); */ listput(lh, i*(u^2+v^2)););););); vecsort(Vec(lh));} \\ Michel Marcus, Apr 10 2021
    
  • Python
    from math import isqrt
    def aupto(limit):
      s = [i*i for i in range(1, limit+1)]
      s2 = sorted(a+b for i, a in enumerate(s) for b in s[i+1:])
      return [isqrt(k) for k in s2 if k in s]
    print(aupto(120)) # Michael S. Branicky, May 10 2021

A055096 Triangle read by rows, sums of 2 distinct nonzero squares: T(n,k) = k^2+n^2, (n>=2, 1 <= k <= n-1).

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 41, 37, 40, 45, 52, 61, 50, 53, 58, 65, 74, 85, 65, 68, 73, 80, 89, 100, 113, 82, 85, 90, 97, 106, 117, 130, 145, 101, 104, 109, 116, 125, 136, 149, 164, 181, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 145, 148, 153, 160
Offset: 2

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Comments

Discovered by Bernard Frénicle de Bessy (1605?-1675). - Paul Curtz, Aug 18 2008
Terms that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0 in A222946. - Reinhard Zumkeller, Mar 23 2013
This triangle T(n,k) gives the circumdiameters for the Pythagorean triangles with a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (see the Floor van Lamoen entries or comments A063929, A063930, A002283, A003991). See also the formula section. Note that not all Pythagorean triangles are covered, e.g., (9,12,15) does not appear. - Wolfdieter Lang, Dec 03 2014

Examples

			The triangle T(n, k) begins:
n\k   1   2   3   4   5   6   7   8   9  10  11 ...
2:    5
3:   10  13
4:   17  20  25
5:   26  29  34  41
6:   37  40  45  52  61
7:   50  53  58  65  74  85
8:   65  68  73  80  89 100 113
9:   82  85  90  97 106 117 130 145
10: 101 104 109 116 125 136 149 164 181
11: 122 125 130 137 146 157 170 185 202 221
12: 145 148 153 160 169 180 193 208 225 244 265
...
13: 170 173 178 185 194 205 218 233 250 269 290 313,
14: 197 200 205 212 221 232 245 260 277 296 317 340 365,
15: 226 229 234 241 250 261 274 289 306 325 346 369 394 421,
16: 257 260 265 272 281 292 305 320 337 356 377 400 425 452 481,
...
Formatted and extended by _Wolfdieter Lang_, Dec 02 2014 (reformatted Jun 11 2015)
The successive terms are (1^2+2^2), (1^2+3^2), (2^2+3^2), (1^2+4^2), (2^2+4^2), (3^2+4^2), ...
		

Crossrefs

Sorting gives A024507. Count of divisors: A055097, Möbius: A055132. For trinv, follow A055088.
Cf. A001844 (right edge), A002522 (left edge), A033429 (central column).

Programs

  • Haskell
    a055096 n k = a055096_tabl !! (n-1) !! (k-1)
    a055096_row n = a055096_tabl !! (n-1)
    a055096_tabl = zipWith (zipWith (+)) a133819_tabl a140978_tabl
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Magma
    [n^2+k^2: k in [1..n-1], n in [2..15]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    sum2distinct_squares_array := (n) -> (((n-((trinv(n-1)*(trinv(n-1)-1))/2))^2)+((trinv(n-1)+1)^2));
  • Mathematica
    T[n_, k_]:= (n+1)^2 + k^2; Table[T[n, k], {n,15}, {k,n}]//Flatten (* Jean-François Alcover, Mar 16 2015, after Reinhard Zumkeller *)
  • SageMath
    def A055096(n,k): return n^2 + k^2
    flatten([[A055096(n,k) for k in range(1,n)] for n in range(2,16)]) # G. C. Greubel, Apr 19 2023

Formula

a(n) = sum2distinct_squares_array(n).
T(n, 1) = A002522(n).
T(n, n-1) = A001844(n-1).
T(2*n-2, n-1) = A033429(n-1).
T(n,k) = A133819(n,k) + A140978(n,k) = (n+1)^2 + k^2, 1 <= k <= n. - Reinhard Zumkeller, Mar 23 2013
T(n, k) = a*b*c/(2*sqrt(s*(s-1)*(s-b)*(s-c))) with s =(a + b + c)/2 and the substitution a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (the circumdiameter for the considered Pythagorean triangles). - Wolfdieter Lang, Dec 03 2014
From Bob Selcoe, Mar 21 2015: (Start)
T(n,k) = 1 + (n-k+1)^2 + Sum_{j=0..k-2} (4*j + 2*(n-k+3)).
T(n,k) = 1 + (n+k-1)^2 - Sum_{j=0..k-2} (2*(n+k-3) - 4*j).
Therefore: 4*(n-k+1) + Sum_{j=0..k-2} (2*(n-k+3) + 4*j) = 4*n(k-1) - Sum_{j=0..k-2} (2*(n+k-3) - 4*j). (End)
From G. C. Greubel, Apr 19 2023: (Start)
T(2*n-3, n-1) = A033429(n-1).
T(2*n-4, n-2) = A079273(n-1).
T(2*n-2, n) = A190816(n).
T(3*n-4, n-1) = 10*A000290(n-1) = A033583(n-1).
Sum_{k=1..n-1} T(n, k) = A331987(n-1).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226141(n-1). (End)

Extensions

Edited: in T(n, k) formula by Reinhard Zumkeller k < n replaced by k <= n. - Wolfdieter Lang, Dec 02 2014
Made definition more precise, changed offset to 2. - N. J. A. Sloane, Mar 30 2015

A025302 Numbers that are the sum of 2 distinct nonzero squares in exactly 1 way.

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 68, 73, 74, 80, 82, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 136, 137, 146, 148, 149, 153, 157, 160, 164, 169, 173, 178, 180, 181, 193, 194, 197, 200, 202, 208, 212, 218, 225, 226, 229
Offset: 1

Views

Author

Keywords

Comments

From Fermat's two squares theorem, every prime of the form 4k + 1 is a term (A002144). - Bernard Schott, Apr 15 2022

Crossrefs

Cf. A002144 (subsequence), A009000, A009003, A024507, A025441, A004431.
Cf. Subsequence of A001983; A004435.

Programs

  • Haskell
    a025302 n = a025302_list !! (n-1)
    a025302_list = [x | x <- [1..], a025441 x == 1]
    
  • Mathematica
    nn = 229; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 1]] (* T. D. Noe, Apr 07 2011 *)
    a[1] = 5; a[ n_] := a[n] = Module[ {s = a[n - 1], t = True, j}, While[ t, s++; Do[ If[ i^2 + (j = Floor[Sqrt[s - i^2]])^2 == s && i < j, t = False; Break], {i, Sqrt[s/2]}]]; s]; (* Michael Somos, Jan 20 2019 *)
  • Python
    from collections import Counter
    from itertools import combinations
    def aupto(lim):
      s = filter(lambda x: x <= lim, (i*i for i in range(1, int(lim**.5)+2)))
      s2 = filter(lambda x: x <= lim, (sum(c) for c in combinations(s, 2)))
      s2counts = Counter(s2)
      return sorted(k for k in s2counts if k <= lim and s2counts[k] == 1)
    print(aupto(229)) # Michael S. Branicky, May 10 2021

Formula

A025441(a(n)) = 1. - Reinhard Zumkeller, Dec 20 2013

A155469 Numbers that are the sum of 2 (not-distinct) numbers; nonzero square and cube, including repetitions.

Original entry on oeis.org

2, 5, 9, 10, 12, 17, 17, 24, 26, 28, 31, 33, 36, 37, 43, 44, 50, 52, 57, 63, 65, 65, 68, 72, 73, 76, 80, 82, 89, 89, 91, 100, 101, 108, 108, 113, 122, 126, 127, 128, 129, 129, 134, 141, 145, 145, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204
Offset: 1

Views

Author

Keywords

Comments

5=2^2+1^3, 12=2^2+2^3, 17=3^2+2^3, 31=2^2+3^3, 43=4^2+3^3, 65=1^2+4^3, 65=8^2+1^3, 100=6^2+4^3, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[a=x^2+y^3;If[a>n,Break[]];If[a==n,AppendTo[lst,n]],{y,5!}],{x,5!}],{n,4*5!}];lst

A121705 Triangle read by rows: 5^n expressed as the sum of two squares.

Original entry on oeis.org

0, 1, 1, 2, 0, 5, 3, 4, 2, 11, 5, 10, 0, 25, 7, 24, 15, 20, 10, 55, 25, 50, 38, 41, 0, 125, 35, 120, 44, 117, 75, 100, 29, 278, 50, 275, 125, 250, 190, 205, 0, 625, 175, 600, 220, 585, 336, 527, 375, 500, 145, 1390, 250, 1375, 625, 1250, 718, 1199, 950, 1025, 0, 3125
Offset: 0

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Examples

			5^n expressed as the sum of two squares: 5^n = x^2 + y^2, 0 <= x < y.
Number of solutions for n=0,1,...: a(n)=1,1,2,2,3,3,4,4,5,5,6,6,...
Triangle of solutions for n=0,1,...:
  {x,y}
  {{0,1}},
  {{1,2}},
  {{0,5},{3,4}},
  {{2,11},{5,10}},
  {{0,25},{7,24},{15,20}},
  {{10,55},{25,50},{38,41}},
  {{0,125},{35,120},{44,117},{75,100}},
  {{29,278},{50,275},{125,250},{190,205}},
  {{0,625},{175,600},{220,585},{336,527},{375,500}},
  {{145,1390},{250,1375},{625,1250},{718,1199},{950,1025}},
  {{0,3125},{237,3116},{875,3000},{1100,2925},{1680,2635},{1875,2500}},
  {{725,6950},{1250,6875},{2642,6469},{3125,6250},{3590,5995},{4750,5125}},
  {{0,15625},{1185,15580},{4375,15000},{5500,14625},{8400,13175},{9375,12500},{10296,11753}}
		

Crossrefs

A155470 Numbers that are the sum of 2 numbers; nonzero square and cube, including repetitions, squareNumber <> cubeNumber.

Original entry on oeis.org

5, 9, 10, 17, 17, 24, 26, 28, 31, 33, 37, 43, 44, 50, 52, 57, 63, 65, 65, 68, 72, 73, 76, 82, 89, 89, 91, 100, 101, 108, 108, 113, 122, 126, 127, 128, 129, 129, 134, 141, 145, 145, 148, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220
Offset: 1

Views

Author

Keywords

Comments

17=3^2+2^3, 17=4^2+1^3, 31=2^2+3^3, 43=4^2+3^3, 65=1^2+4^3, 65=8^2+1^3, 100=6^2+4^3, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^2+y^3;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,4*5!}];lst

A155472 Numbers that are the sum of 2 (not-distinct) numbers; nonzero power3 and power5, including repetitions.

Original entry on oeis.org

2, 9, 28, 33, 40, 59, 65, 96, 126, 157, 217, 244, 248, 251, 270, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1088, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355
Offset: 1

Views

Author

Keywords

Comments

40=2^3+2^5, 1032=2^3+4^5 = 1032=10^3+2^5, 1971=12^3+3^5, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]],{y,5!}],{x,5!}],{n,7!}];lst

A155473 Numbers of the form x^3+y^5, with x,y>0 and x<>y.

Original entry on oeis.org

9, 28, 33, 59, 65, 96, 126, 157, 217, 244, 248, 251, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355, 2440, 2745, 2752
Offset: 1

Views

Author

Keywords

Comments

Numbers with more than one of these representations are repeated for each of them.
This concerns 1032 = 2^3+4^5 = 10^3+2^5 or 9504 = 12^3+6^5 = 21^3+3^5, for example (see A035046).

Examples

			59=3^3+2^5, 157=5^3+2^5, 513=8^3+1^5, 586=7^3+3^5, ...
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,7!}];lst

Extensions

Edited by R. J. Mathar, Mar 02 2009
Showing 1-10 of 10 results.