cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A004663 Powers of 3 written in base 9.

Original entry on oeis.org

1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000, 3000000, 10000000, 30000000, 100000000, 300000000, 1000000000, 3000000000, 10000000000, 30000000000, 100000000000, 300000000000, 1000000000000, 3000000000000, 10000000000000, 30000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000244, A004656, A004658, A004659, ... : powers of 3 in base 10, 2, 4, 5, ...
Cf. A000079, A004642, ..., A004655: powers of 2 written in base 10, 2, 3, ..., 16.

Programs

  • Maple
    seq(op([10^i,3*10^i]),i=0..100); # Robert Israel, Jun 25 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[3^n, 9]], {n, 0, 100}] (* G. C. Greubel, Oct 12 2018 *)
  • PARI
    a(n)=3^bittest(n,0)*10^(n\2) \\ M. F. Hasler, Jun 25 2018

Formula

From Paul Barry, Jul 14 2004: (Start)
G.f.: (1 + 3*x)/(1 - 10*x^2);
a(n) = 2*a(n-1) + 3*a(n-2) + 10^floor((n-2)/2);
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*3^(n-2*k). (End)
a(n) = 3*a(n-1) + ((1 + (-1)^n)/2)*a(n-2) with a(0)=1, a(1)=3. - Taras Goy, Mar 20 2019
E.g.f.: cosh(sqrt(10)*x) + 3*sinh(sqrt(10)*x)/sqrt(10). - Stefano Spezia, Mar 31 2023

A037097 Periodic vertical binary vectors of powers of 3, starting from bit-column 2 (halved).

Original entry on oeis.org

0, 12, 120, 57120, 93321840, 10431955353116229600, 8557304989566294213168677685339060480, 102743047168201563425402150421568484707810385382513037790885688657488312400960
Offset: 2

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Comments

Conjecture: For n>=3, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x + 1) ^ A000225(n-1) (= A051179(n-2)). If this holds, then for n>=3, a(n) = A048720bi(A136386(n),A048723bi(3,A000225(n-1))) = A048720bi(A136386(n),A051179(n-2)).

Examples

			When powers of 3 are written in binary (see A004656), under each other as:
000000000001 (1)
000000000011 (3)
000000001001 (9)
000000011011 (27)
000001010001 (81)
000011110011 (243)
001011011001 (729)
100010001011 (2187)
it can be seen that, starting from the column 2 from the right, the bits in the n-th column can be arranged in periods of 2^(n-1): 4, 8, ... This sequence is formed from those bits: 0011, reversed is 11100, which is binary for 12, thus a(3) = 12, 00011110, reversed is 011110000, which is binary for 120, thus a(4) = 120.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.

Crossrefs

a(n) = floor(A037096(n)/(2^(2^(n-1)))). See also A036284, A136386.

Programs

  • Maple
    a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n-1))-1);
    bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);

Formula

a(n) = Sum_{k=0..A000225(n-1)} ([A000244(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function.

Extensions

Entry revised Dec 29 2007

A004645 Powers of 2 written in base 6.

Original entry on oeis.org

1, 2, 4, 12, 24, 52, 144, 332, 1104, 2212, 4424, 13252, 30544, 101532, 203504, 411412, 1223224, 2450452, 5341344, 15123132, 34250304, 112541012, 225522024, 455444052, 1355332144, 3155104332, 10354213104
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000079, A004642, ..., A004655: powers of 2 written in base 10, 3, 4, ..., 16
Cf. A000244, A004656, A004658, A004659, ... : powers of 3 written in base 10, 2, 4, 5, ...

Programs

  • Magma
    [Seqint(Intseq(2^n, 6)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[2^n, 6]], {n, 0, 40}] (* Vincenzo Librandi, Jun 07 2013 *)
  • PARI
    a(n)=fromdigits(digits(2^n,6)) \\ M. F. Hasler, Jun 23 2018
    

A004653 Powers of 2 written in base 14. (Next term contains a non-decimal character.)

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 48, 92, 144, 288, 532
Offset: 0

Views

Author

Keywords

Comments

Next term contains a non-decimal character if such characters are chosen to represent digits > 9, where "digit" means the coefficients in N = Sum_{k>=0} d_k * b^k. This isn't possible here, but digits 0, 10, ..., 13 could be represented, e.g., using 00, 10, ..., 40. This would not affect a(0)..a(10), which don't have a digit 0. - M. F. Hasler, Jun 25 2018

Crossrefs

Cf. A000079, A004642, ..., A004655: powers of 2 written in base 10, 2, 3, ..., 16.
Cf. A000244, A004656, A004658, A004659, ...: powers of 3 in base 10, 2, 4, 5, ...

Programs

  • Mathematica
    BaseForm[Table[2^n, {n, 0, 10}], 14] (* Alonso del Arte, Mar 18 2005 *)
  • PARI
    apply( a(n)=fromdigits(digits(2^n,14)), [0..10]) \\ This yields Sum d[k]*10^k where d[k] are the base 14 digits. To get strings possibly containing letters 'A'..'D' replace fromdigits(...) by Strchr(apply(d->48+d+(d>9)*7,...)). - M. F. Hasler, Jun 25 2018

A004654 Powers of 2 written in base 15. (Next term contains a non-decimal character.)

Original entry on oeis.org

1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 918, 1331, 2662
Offset: 0

Views

Author

Keywords

Comments

a(14) is defined as "2^14 written in base 15". However, the base-15 digits of 2^14 are [4,12,12,4]. The standard convention of using letters A, B, ... to represent digits > 9, cannot be used in the Data sections of OEIS entries. One possibility to encode such terms within the given constraints and without affecting the earlier terms would be to use 00, 10, 20, ..., 50 to represent unambiguously the digits 0, 10, 11, ..., 14. - M. F. Hasler, Jun 22 2018.
This sequence makes a nice puzzle. It would be possible to allow non-decimal characters by using pairs of decimal digits instead of single digits, but this would spoil the beauty of the puzzle. - N. J. A. Sloane, Jun 25 2018

Crossrefs

Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16.
Cf. A000244, A004656, A004658, A004659, ...: powers of 3 in base 10, 2, 4, 5, ...

Programs

  • PARI
    apply( a(n,b=15,m=2)=fromdigits(digits(m^n,b)), [0..13]) \\ This sums the base-15 digits multiplied by powers of 10. Digits > 9 occurring for n >= 14 will carry over to the left (4CC4 -> 5324). - M. F. Hasler, Jun 22 2018

A004667 Powers of 3 written in base 13. (Next term contains a non-decimal digit.)

Original entry on oeis.org

1, 3, 9, 21, 63, 159, 441
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16.
Cf. A000244, A004656, A004658, A004659, ..., A004668: powers of 3 in base 10, 2, 4, 5, ..., 26.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,13]]&/@(3^Range[0,6]) (* Harvey P. Dale, Mar 05 2018 *)
  • PARI
    apply( a(n, b=13, m=3)=fromdigits(digits(m^n, b)), [0..6]) \\ This implements one possible continuation of the sequence beyond n = 6: write digits in decimal and carry over (so CC4 -> 12*100 + 12*10 + 4 = 1324). - M. F. Hasler, Jun 22 2018

A004669 Powers of 3 written in base 27.

Original entry on oeis.org

1, 3, 9, 10, 30, 90, 100, 300, 900, 1000, 3000, 9000, 10000, 30000, 90000, 100000, 300000, 900000, 1000000, 3000000, 9000000, 10000000, 30000000, 90000000, 100000000, 300000000, 900000000, 1000000000
Offset: 0

Views

Author

Keywords

Comments

Similar to powers of 2 in base 8 (A004647) or 16 (A004655). - M. F. Hasler, Jun 22 2018

Crossrefs

Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16.
Cf. A000244, A004656, A004658, A004659, ..., A004668: powers of 3 in base 10, 2, 4, 5, ..., 26.

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[3^n, 27]], {n, 0, 100}] (* G. C. Greubel, Oct 12 2018 *)
  • PARI
    apply( a(n)=3^(n%3)*10^(n\3), [0..20]) \\ M. F. Hasler, Jun 22 2018

Formula

a(n) = 3^(n mod 3)*10^floor(n/3). - M. F. Hasler, Jun 22 2018
From Chai Wah Wu, Sep 03 2020: (Start)
a(n) = 10*a(n-3) for n > 2.
G.f.: (-9*x^2 - 3*x - 1)/(10*x^3 - 1). (End)

A211864 Powers of three read in base 2.

Original entry on oeis.org

1, 3, 9, 11, 17, 19, 41, 43, 81, 131, 169, 219, 241, 419, 681, 651, 849, 1203, 2441, 1867, 4369, 3027, 5625, 12475, 15457, 26403, 26553, 48795, 54561, 99667, 80345, 158731, 221313, 332467, 460857, 375451, 569345, 987267, 1181145, 1594971, 1924001, 4458531
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2013

Keywords

Examples

			a(3)=11 because 3^3=27_10 but in base 2 it is interpreted as 2*2^1+7*2^0=4+7=11. That is to say, digits larger than the base are carried.
		

Crossrefs

Cf. A004656.

Programs

  • Mathematica
    f[n_] := FromDigits[ IntegerDigits[3^n], 2]; Array[f, 42, 0]

A385157 Numbers k so that the binary expansion of 3^k starts with the binary expansion of k.

Original entry on oeis.org

1, 2, 3, 9, 27, 65, 95, 123, 163, 303, 451, 597, 760, 1757, 2546, 2700, 7142, 25030, 25719, 25772, 49105, 61426, 90981, 107497, 194210, 659077, 6732590, 8513462, 9344030, 14549893, 32276115, 89912342, 181720904, 280120681, 437484689, 896754175, 10625891495, 30605576222
Offset: 1

Views

Author

Jayde S. Massmann, Jun 19 2025

Keywords

Examples

			9 is in the sequence as 3^9 is 100110011100011 in binary, and 9 is 1001.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := k < Log[3, k+1] + (Floor[k*Log2[3]-Log2[k]])/Log2[3]; Select[Range[10^5], q] (* Amiram Eldar, Jun 20 2025 *)
  • PARI
    isok(k) = my(bk = binary(k), vb=Vec(binary(3^k), #bk)); vb == bk; \\ Michel Marcus, Jun 20 2025

Extensions

a(26) from Hugo Pfoertner, Jun 20 2025
a(27)-a(36) from Amiram Eldar, Jun 20 2025
a(37)-a(38) from Jinyuan Wang, Jun 27 2025
Previous Showing 11-19 of 19 results.