cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A115278 Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.

Original entry on oeis.org

1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: B(x) of b(n) where b(2*n)=a(n), b(2*n+1)=0. B(x)=Product {m >= 1} (1+x^(2*m)/(2*m)!).

A275679 Number of set partitions of [n] with alternating block size parities.

Original entry on oeis.org

1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2016

Keywords

Examples

			a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(
          `if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

A327000 A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			Array starts:
n\k [  3    4        5            6                 7 ]
[0]    1,   6,       26,          100,              365, ...            [A125107]
[1]    1,   9,       68,          517,              4163, ...           [A048742]
[2]    3,   117,     4500,        199155,           10499643, ...       [A326995]
[3]    10,  2574,    748616,      282846568,        141482705378, ...   [A327002]
[4]    35,  70005,   192426260,   799156187475,     4961959681629275, ...
[5]    126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
   A001700,
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);

Formula

The columns for k = 0, 1, 2 are suppressed as they are identical 0.
A(0, k) = A000108(k) - A011782(k).
A(1, k) = A000142(k) - A000110(k).
A(2, k) = A002105(k) - A005046(k-1) for k >= 1.
A(3, k) = A018893(k) - A291973(k).
A(4, k) = A326999(k) - A291975(k).

A331611 E.g.f.: exp(1 / (2 - cosh(x)) - 1) (even powers only).

Original entry on oeis.org

1, 1, 10, 241, 10585, 732826, 73233205, 9955632961, 1764233731270, 394629336427021, 108652463882802505, 36084903957564392206, 14217903951354603567385, 6554505383225768210009041, 3493988190176442653240091010, 2131975894217009666242489287001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Cosh[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    A094088[0] = 1; A094088[n_] := A094088[n] = Sum[Binomial[2 n, 2 k] A094088[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A094088[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n-1,2*k-1) * A094088(k) * a(n-k).
a(n) ~ 2^(2*n + 1/4) * exp(1/(2*sqrt(3)*log(2 + sqrt(3))) - 2/3 + sqrt(8*n/log(2 + sqrt(3)))/3^(1/4) - 2*n) * n^(2*n - 1/4) / (3^(1/8) * log(2 + sqrt(3))^(2*n + 1/4)). - Vaclav Kotesovec, Jan 26 2020

A081559 Expansion of e.g.f.: exp(cosh(2*x)-1), even powers only.

Original entry on oeis.org

1, 4, 64, 1984, 97024, 6713344, 615829504, 71654785024, 10243143368704, 1755968011239424, 354197952894337024, 82788022987201183744, 22140953727834378993664, 6703959915806302859689984, 2277487386474356139699994624, 861378969099073547571187154944
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Periodic zeros suppressed.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)-1) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(exp(cosh(2*x)-1), x, 2*n+1)*factorial(2*n), x, 2*n), n = 0 .. 15); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2*x]-1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Aug 13 2019 *)
  • PARI
    my(x='x+O('x^30)); v=Vec(serlaplace( exp(cosh(2*x)-1) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [factorial(2*n)*( exp(cosh(2*x)-1) ).series(x, 2*n+1).list()[2*n] for n in (0..15)] # G. C. Greubel, Aug 13 2019

Formula

E.g.f.: exp(cosh(2*x))/e = exp(cosh(2*x)-1).

Extensions

Definition amended by Georg Fischer, Dec 03 2021

A224271 Number of set partitions of {1,2,...,n} such that the element 1 is in an odd-sized block.

Original entry on oeis.org

1, 1, 3, 8, 28, 107, 459, 2151, 10931, 59700, 348146, 2155925, 14112377, 97266301, 703484851, 5323515156, 42040470092, 345670438963, 2953171501547, 26166317121747, 240047041176843, 2276607815242880, 22290187889601330, 225018607554567149, 2339331996135377345
Offset: 1

Views

Author

Geoffrey Critzer, Apr 02 2013

Keywords

Examples

			a(4) = 8 because we have: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4},{3}}, {{1},{2},{3},{4}}.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*(i+1), i=0..degree(p)))(b(n-1$2)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Mar 08 2015
    # second Maple program:
    b:= proc(n, t, m) option remember; `if`(n=0, t, (m-1)*
          b(n-1, t, m)+b(n-1, 1-t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n-1, 1$2):
    seq(a(n), n=1..25);  # Alois P. Heinz, May 17 2023
  • Mathematica
    nn=25;Drop[Range[0,nn]!CoefficientList[Series[Integrate[Exp[Cosh[x]-1]D[ Exp[Sinh[x]],x],x],{x,0,nn}],x],1]

Formula

E.g.f. A(x) satisfies: A'(x) = B'(x)*C(x) where B(x) is the e.g.f. for A003724 and C(x) is the e.g.f. for A005046.
a(n) = Sum_{k=0..floor((n-1)/2)} (k+1)*A124322(n-1,k). - Alois P. Heinz, Apr 02 2013
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * Bell(n-2*k-1). - Ilya Gutkovskiy, Apr 10 2022
From Alois P. Heinz, May 17 2023: (Start)
a(n) = Sum_{k=0..n-1} (-1)^k * A283424(n-1,k).
a(n) mod 2 = A131719(n+1). (End)

A352617 Expansion of e.g.f. exp( exp(x) + sinh(x) - 1 ).

Original entry on oeis.org

1, 2, 5, 16, 60, 254, 1199, 6206, 34827, 210264, 1355992, 9288954, 67279309, 513149498, 4107383185, 34398823888, 300629113292, 2735356900806, 25857446103571, 253472859754918, 2572266378189583, 26981781750668760, 292136508070103208, 3260640536587635410, 37472102225288489529
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-k)*binomial(n-1, k-1)*(1+(k mod 2)), k=1..n))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, Mar 24 2022
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] + Sinh[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 1, k - 1] (3 - (-1)^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp( exp(x) + sinh(x) - 1 ))) \\ Michel Marcus, Mar 24 2022

Formula

a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} binomial(n-1,k-1) * (3 - (-1)^k) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A000110(k) * A003724(n-k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A005046(k) * A352279(n-2*k).

A047689 Numerators of coefficients in Taylor series for exp(cos(x)-1).

Original entry on oeis.org

1, -1, 1, -31, 379, -1639, 150349, -4373461, 39074491, -6698486371, 30708135509, -4934550701809, 1319703681935929, -99896787342523081, 2121075416425574701, -72929243565543262421, 83877585692383961052499, -2410048463569672917849859
Offset: 0

Views

Author

Keywords

Examples

			1 - (1/2)*x^2 + (1/6)*x^4 - (31/720)*x^6 + (379/40320)*x^8 - (1639/907200)*x^10 + ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

Crossrefs

A047690 Denominators of coefficients in Taylor series for exp(cos(x)-1).

Original entry on oeis.org

1, 2, 6, 720, 40320, 907200, 479001600, 87178291200, 5230697472000, 6402373705728000, 221172909834240000, 281000181944401920000, 620448401733239439360000, 403291461126605635584000000, 76222086152928465125376000000, 24113896346562823512391680000000
Offset: 0

Views

Author

Keywords

Examples

			1 - (1/2)*x^2 + (1/6)*x^4 - (31/720)*x^6 + (379/40320)*x^8 - (1639/907200)*x^10 + ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

Crossrefs

A080527 Expansion of e.g.f. exp(3*cosh(x))/e^3 (even powers only).

Original entry on oeis.org

1, 3, 30, 543, 14745, 546618, 26119965, 1547467743, 110507211390, 9310580616243, 910032696123645, 101790848712790218, 12883623878563854105, 1827803943114479006043, 288318381606931126782270, 50215020818975432279332743, 9597691024295026236008687265
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Periodic zeros suppressed.

Examples

			exp(3*cosh(x))/exp(3) = 1 + 3*x^2/2! + 30*x^4/4! + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Exp[3Cosh[x]]/E^3,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Dec 15 2013 *)

Formula

E.g.f.: exp(3*cosh(x)-3).
a(0) = 1; a(n) = 3 * Sum_{k=1..n} binomial(2*n-1,2*k-1) * a(n-k). - Ilya Gutkovskiy, Mar 10 2022
Previous Showing 11-20 of 40 results. Next