A115278
Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.
Original entry on oeis.org
1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
A275679
Number of set partitions of [n] with alternating block size parities.
Original entry on oeis.org
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Cf.
A003724,
A005046,
A007837,
A038041,
A275309,
A275310,
A275311,
A275312,
A275313,
A286076,
A361804.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..35);
-
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A327000
A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
Offset: 0
Array starts:
n\k [ 3 4 5 6 7 ]
[0] 1, 6, 26, 100, 365, ... [A125107]
[1] 1, 9, 68, 517, 4163, ... [A048742]
[2] 3, 117, 4500, 199155, 10499643, ... [A326995]
[3] 10, 2574, 748616, 282846568, 141482705378, ... [A327002]
[4] 35, 70005, 192426260, 799156187475, 4961959681629275, ...
[5] 126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
A001700,
-
ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);
A331611
E.g.f.: exp(1 / (2 - cosh(x)) - 1) (even powers only).
Original entry on oeis.org
1, 1, 10, 241, 10585, 732826, 73233205, 9955632961, 1764233731270, 394629336427021, 108652463882802505, 36084903957564392206, 14217903951354603567385, 6554505383225768210009041, 3493988190176442653240091010, 2131975894217009666242489287001
Offset: 0
-
nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Cosh[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A094088[0] = 1; A094088[n_] := A094088[n] = Sum[Binomial[2 n, 2 k] A094088[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A094088[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A081559
Expansion of e.g.f.: exp(cosh(2*x)-1), even powers only.
Original entry on oeis.org
1, 4, 64, 1984, 97024, 6713344, 615829504, 71654785024, 10243143368704, 1755968011239424, 354197952894337024, 82788022987201183744, 22140953727834378993664, 6703959915806302859689984, 2277487386474356139699994624, 861378969099073547571187154944
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(2*x)-1) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Aug 13 2019
-
seq(coeff(series(exp(cosh(2*x)-1), x, 2*n+1)*factorial(2*n), x, 2*n), n = 0 .. 15); # G. C. Greubel, Aug 13 2019
-
With[{nn = 30}, CoefficientList[Series[Exp[Cosh[2*x]-1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Aug 13 2019 *)
-
my(x='x+O('x^30)); v=Vec(serlaplace( exp(cosh(2*x)-1) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Aug 13 2019
-
[factorial(2*n)*( exp(cosh(2*x)-1) ).series(x, 2*n+1).list()[2*n] for n in (0..15)] # G. C. Greubel, Aug 13 2019
A224271
Number of set partitions of {1,2,...,n} such that the element 1 is in an odd-sized block.
Original entry on oeis.org
1, 1, 3, 8, 28, 107, 459, 2151, 10931, 59700, 348146, 2155925, 14112377, 97266301, 703484851, 5323515156, 42040470092, 345670438963, 2953171501547, 26166317121747, 240047041176843, 2276607815242880, 22290187889601330, 225018607554567149, 2339331996135377345
Offset: 1
a(4) = 8 because we have: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4},{3}}, {{1},{2},{3},{4}}.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
end:
a:= n-> (p-> add(coeff(p, x, i)*(i+1), i=0..degree(p)))(b(n-1$2)):
seq(a(n), n=1..15); # Alois P. Heinz, Mar 08 2015
# second Maple program:
b:= proc(n, t, m) option remember; `if`(n=0, t, (m-1)*
b(n-1, t, m)+b(n-1, 1-t, m)+b(n-1, t, m+1))
end:
a:= n-> b(n-1, 1$2):
seq(a(n), n=1..25); # Alois P. Heinz, May 17 2023
-
nn=25;Drop[Range[0,nn]!CoefficientList[Series[Integrate[Exp[Cosh[x]-1]D[ Exp[Sinh[x]],x],x],{x,0,nn}],x],1]
A352617
Expansion of e.g.f. exp( exp(x) + sinh(x) - 1 ).
Original entry on oeis.org
1, 2, 5, 16, 60, 254, 1199, 6206, 34827, 210264, 1355992, 9288954, 67279309, 513149498, 4107383185, 34398823888, 300629113292, 2735356900806, 25857446103571, 253472859754918, 2572266378189583, 26981781750668760, 292136508070103208, 3260640536587635410, 37472102225288489529
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-k)*binomial(n-1, k-1)*(1+(k mod 2)), k=1..n))
end:
seq(a(n), n=0..24); # Alois P. Heinz, Mar 24 2022
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] + Sinh[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 1, k - 1] (3 - (-1)^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp( exp(x) + sinh(x) - 1 ))) \\ Michel Marcus, Mar 24 2022
A047689
Numerators of coefficients in Taylor series for exp(cos(x)-1).
Original entry on oeis.org
1, -1, 1, -31, 379, -1639, 150349, -4373461, 39074491, -6698486371, 30708135509, -4934550701809, 1319703681935929, -99896787342523081, 2121075416425574701, -72929243565543262421, 83877585692383961052499, -2410048463569672917849859
Offset: 0
1 - (1/2)*x^2 + (1/6)*x^4 - (31/720)*x^6 + (379/40320)*x^8 - (1639/907200)*x^10 + ...
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
A047690
Denominators of coefficients in Taylor series for exp(cos(x)-1).
Original entry on oeis.org
1, 2, 6, 720, 40320, 907200, 479001600, 87178291200, 5230697472000, 6402373705728000, 221172909834240000, 281000181944401920000, 620448401733239439360000, 403291461126605635584000000, 76222086152928465125376000000, 24113896346562823512391680000000
Offset: 0
1 - (1/2)*x^2 + (1/6)*x^4 - (31/720)*x^6 + (379/40320)*x^8 - (1639/907200)*x^10 + ...
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
A080527
Expansion of e.g.f. exp(3*cosh(x))/e^3 (even powers only).
Original entry on oeis.org
1, 3, 30, 543, 14745, 546618, 26119965, 1547467743, 110507211390, 9310580616243, 910032696123645, 101790848712790218, 12883623878563854105, 1827803943114479006043, 288318381606931126782270, 50215020818975432279332743, 9597691024295026236008687265
Offset: 0
exp(3*cosh(x))/exp(3) = 1 + 3*x^2/2! + 30*x^4/4! + ...
-
With[{nn=30},Take[CoefficientList[Series[Exp[3Cosh[x]]/E^3,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Dec 15 2013 *)
Comments