cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A248225 a(n) = 6^n - 3^n.

Original entry on oeis.org

0, 3, 27, 189, 1215, 7533, 45927, 277749, 1673055, 10058013, 60407127, 362619909, 2176250895, 13059099693, 78359381127, 470170635669, 2821066860735, 16926530304573, 101559569247927, 609358577749029, 3656154953278575, 21936940180024653
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-3^n: A005061 (k=4), A005058 (k=5), this sequence (k=6), A190541 (k=7), A190543 (k=8), A059410 (k=9), A248226 (k=10), A139741 (k=11).

Programs

  • Magma
    [6^n-3^n: n in [0..30]];
  • Mathematica
    Table[6^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x / ((1 - 3 x) (1 - 6 x)), {x, 0, 30}], x]
    LinearRecurrence[{9,-18},{0,3},30] (* Harvey P. Dale, Jul 12 2025 *)

Formula

G.f.: 3*x/((1-3*x)*(1-6*x)).
a(n) = 9*a(n-1) - 18*a(n-2).
a(n) = 3^n*(2^n - 1) = A000244(n)*A000225(n).
E.g.f.: 2*exp(9*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Mar 31 2025

A327318 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = 2^(n-1) ((x+r)^n - (x+s)^n)/(r - s), where r = 1 and s = 1/2.

Original entry on oeis.org

1, 3, 4, 7, 18, 12, 15, 56, 72, 32, 31, 150, 280, 240, 80, 63, 372, 900, 1120, 720, 192, 127, 882, 2604, 4200, 3920, 2016, 448, 255, 2032, 7056, 13888, 16800, 12544, 5376, 1024, 511, 4590, 18288, 42336, 62496, 60480, 37632, 13824, 2304, 1023, 10220, 45900
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

p(x,n) is a strong divisibility sequence of polynomials. That is, gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			First six rows:
   1;
   3,   4;
   7,  18,  12;
  15,  56,  72,   32;
  31, 150, 280,  240,  80;
  63, 372, 900, 1120, 720, 192;
The first six polynomials, not factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, 15 + 56 x + 72 x^2 + 32 x^3, 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, 63 + 372 x + 900 x^2 + 1120 x^3 + 720 x^4 + 192 x^5.
The first six polynomials, factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, (3 + 4 x) (5 + 12 x + 8 x^2), 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, (3 + 4 x) (3 + 6 x + 4 x^2) (7 + 18 x + 12 x^2).
		

Crossrefs

Cf. A327316, A327317, A000225 (x = 0), A005061 (x = 1), A081199 (x = 1/2).

Programs

  • Mathematica
    r = 1; s = 1/2; f[x_, n_] := 2^(n - 1) ((x + r)^n - (x + s)^n)/(r - s);
    Column[Table[Expand[f[x, n]], {n, 1, 5}]]
    c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
    TableForm[Table[c[x, n], {n, 1, 10}]] (* A327318 array *)
    Flatten[Table[c[x, n], {n, 1, 12}]]   (* A327318 sequence *)

A358125 Triangle read by rows: T(n, k) = 2^n - 2^(n-k-1) - 2^k, 0 <= k <= n-1.

Original entry on oeis.org

0, 1, 1, 3, 4, 3, 7, 10, 10, 7, 15, 22, 24, 22, 15, 31, 46, 52, 52, 46, 31, 63, 94, 108, 112, 108, 94, 63, 127, 190, 220, 232, 232, 220, 190, 127, 255, 382, 444, 472, 480, 472, 444, 382, 255, 511, 766, 892, 952, 976, 976, 952, 892, 766, 511, 1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023
Offset: 1

Views

Author

Keywords

Comments

T(n, k) is the expanded number of player-reduced static games within an n-player two-strategy game scenario in which one player (the "standpoint") faces a specific combination of other players' individual strategies with the possibility of anti-coordination between them -- the total number of such combinations is 2^(n-1). The value of k represents the number of other players who (are expected to) agree on one of the two strategies in S, while the other n-k-1 choose the other strategy; the standpoint player is not included.

Examples

			Triangle begins:
  0;
  1,     1;
  3,     4,    3;
  7,    10,   10,    7;
  15,   22,   24,   22,   15;
  31,   46,   52,   52,   46,   31;
  63,   94,  108,  112,  108,   94,   63;
 127,  190,  220,  232,  232,  220,  190,  127;
 255,  382,  444,  472,  480,  472,  444,  382,  255;
 511,  766,  892,  952,  976,  976,  952,  892,  766,  511;
1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023;
2047, 3070, 3580, 3832, 3952, 4000, 4000, 3952, 3832, 3580, 3070, 2047;
  ...
		

Crossrefs

Column k=0 gives A000225(n-1).
Column k=1 gives A033484(n-2).
Column k=2 gives A053208(n-3).

Programs

  • Maple
    T := n -> seq(2^n - 2^(n - k - 1) - 2^k, k = 0 .. n - 1);
    seq(T(n), n=1..12);
  • Mathematica
    T[n_, k_] := 2^n - 2^(n - k - 1) - 2^k; Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, Dec 20 2022 *)

Formula

T(n, k) = 2^n - 2^(n-k-1) - 2^k.
Sum_{k=0..n-1} T(n,k)*binomial(n-1,k) = 2*A005061(n-1)

A383755 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 37, 37, 1, 1, 175, 925, 175, 1, 1, 781, 19525, 19525, 781, 1, 1, 3367, 375661, 1776775, 375661, 3367, 1, 1, 14197, 6828757, 144142141, 144142141, 6828757, 14197, 1, 1, 58975, 119609725, 10884484975, 48575901517, 10884484975, 119609725, 58975, 1
Offset: 0

Views

Author

Seiichi Manyama, May 09 2025

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    7,      1;
  1,   37,     37,       1;
  1,  175,    925,     175,      1;
  1,  781,  19525,   19525,    781,    1;
  1, 3367, 375661, 1776775, 375661, 3367, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000012, A005061, A383756(n-2), A383757(n-3).
Cf. A022168.

Programs

  • PARI
    T(n, k) = if(n*k==0, n^k, 3^(n-k)*T(n-1, k-1)+4^k*T(n-1, k));
    
  • Sage
    def a_row(n): return [3^(k*(n-k))*q_binomial(n, k, 4/3) for k in (0..n)]
    for n in (0..8): print(a_row(n))

Formula

T(n,k) = 3^(k*(n-k)) * q-binomial(n, k, 4/3).
T(n,k) = 4^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k).
T(n,k) = T(n,n-k).
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 4^j - 3^j.

A065622 Numerator of 1 - (3/4)^n - frac((3/2)^n), where frac(x) = x - floor(x).

Original entry on oeis.org

0, -1, 3, 13, 159, 173, 1767, 12789, 17759, 126237, 292183, 1930245, 3724303, 23940141, 14206087, 99585429, 640559295, 12562430525, 7042526903, 43417422885, 813747135599, 494896655693, 3000760993767, 18098709141429, 249612172740383
Offset: 0

Views

Author

Henry Bottomley, Dec 03 2001

Keywords

Comments

The presumption that the fraction is positive for n > 1 underlies the presumed solution to Waring's problem.

Examples

			a(3) = 13 since 1 - (3/4)^3 - frac((3/2)^3) = 1 - 27/64 - frac(27/8) = 1 - 27/64 - 3/8 = (64 - 27 - 24)/64 = 13/64.
		

Crossrefs

Denominator is A000302. Cf. A002804.

Programs

  • Mathematica
    Table[1 - (3/4)^n - FractionalPart[(3/2)^n], {n, 0, 24}] // Numerator (* Jean-François Alcover, Apr 26 2016 *)
  • PARI
    { for (n=0, 200, a=numerator(1 - (3/4)^n - frac((3/2)^n)); write("b065622.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 24 2009

Formula

a(n) = 4^n*(1 + floor((3/2)^n)) - 3^n - 6^n = A005061(n) - A002380(n)*A000079(n) = A000302(n)*(1 + A002379(n)) - A000244(n) - A000400(n).

A065814 a(n) = tau(n)^2 - tau(n^2), where tau(n) = A000005(n).

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 9, 4, 7, 1, 21, 1, 7, 7, 16, 1, 21, 1, 21, 7, 7, 1, 43, 4, 7, 9, 21, 1, 37, 1, 25, 7, 7, 7, 56, 1, 7, 7, 43, 1, 37, 1, 21, 21, 7, 1, 73, 4, 21, 7, 21, 1, 43, 7, 43, 7, 7, 1, 99, 1, 7, 21, 36, 7, 37, 1, 21, 7, 37, 1, 109, 1, 7, 21, 21, 7, 37, 1, 73, 16, 7, 1, 99, 7, 7, 7, 43
Offset: 1

Views

Author

Labos Elemer, Nov 22 2001

Keywords

Comments

If n = p^c = power of a prime, then a(n) = (c+1)^2 - (2c+1) = c^2. If n is squarefree with k prime factors then a(n) = 4^k - 3^k, so A065814(A002110(n)) = 4^n - 3^n = A005061(n). Terms depend on prime signature only.
If n is a prime (A000040), then a(n) = 1. If n is a semiprime (A001358), then a(n) = 4 + 3*ceiling(sqrt(n)) - 3*floor(sqrt(n)). If n is a triprime (A014612), then a(n) = 9 * floor(1/omega(n)) + 21 * (1 - (omega(n) mod 2)) + 37 * floor(omega(n)/3), n > 1. - Wesley Ivan Hurt, May 24 2013

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n]^2 - DivisorSigma[0, n^2]; Array[a, 100] (* Amiram Eldar, Apr 25 2024 *)
  • PARI
    a(n) = { numdiv(n)^2 - numdiv(n^2) } \\ Harry J. Smith, Oct 31 2009

Formula

a(n) = A000005(n)^2 - A000005(n^2).
G.f.: Sum_{n>=1} A000005(n^2)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 26 2014
a(n) = A035116(n) - A048691(n). - Amiram Eldar, Apr 25 2024

A069363 Number of 5 X n binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1, 99, 5503, 247759, 10056959, 384479935, 14142942975, 506544513343, 17792504911231, 615793150236223, 21067276157958271, 714097521397778495, 24022705580163949439, 803089367467759614015, 26706726258154287563903
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Row 5 of A359576.
Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069377 Number of 19 X n binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1, 22619537, 73209847696773, 115159568055775538305, 127111602733664216603859933, 114600698023505978867449552531361, 90979848541738331379871952593270363301, 66310152669631463041584664319631353072678161, 45499186393097406209322583222635994035907090539853
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

a(5)-a(9) from Sean A. Irvine, Apr 30 2024

A069381 Number of n X 6 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

63, 3367, 167337, 8057905, 384479935, 18287614751, 868972410929, 41278350729313, 1960665141991079, 93127506982471999, 4423369428678533705, 210101996822111263265, 9979493366382754619551, 474010149850018604630031, 22514756623847166766088601
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024

A069382 Number of n X 7 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

127, 14197, 1461797, 144769425, 14142942975, 1374273318721, 133267613878665, 12913642307413193, 1251002814214706415, 121180225103268487525, 11738064445690843712709, 1137001292953873957167377, 110135446775389136829629647, 10668293121854243285020490369
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Extensions

More terms from Sean A. Irvine, Apr 30 2024
Previous Showing 41-50 of 84 results. Next