cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A126989 Gaps associated with the first and smallest arithmetic progressions of n consecutive primes in A006560.

Original entry on oeis.org

0, 1, 2, 6, 30, 30, 210
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Comments

The gap for the first and smallest AP of 7 consecutive primes is at least 210 (so the 7th term is not definitive).

References

  • P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.

Crossrefs

Extensions

a(7) corrected by Stephen Tucker, Jan 25 2009

A376109 a(n) is the length of the longest arithmetic progression ending at n consisting of numbers with the same number of prime factors as n, counted with multiplicity.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 3, 2, 1, 3, 2, 3, 2, 3, 3, 4, 2, 2, 3, 2, 3, 5, 2, 3, 1, 3, 3, 3, 2, 2, 3, 2, 2, 4, 3, 4, 3, 2, 4, 3, 2, 3, 2, 3, 3, 5, 2, 4, 3, 3, 5, 4, 2, 3, 3, 3, 1, 3, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 4, 4, 3, 3, 4, 5, 3, 3, 2, 4, 4, 4, 3, 3, 2, 4, 3, 3
Offset: 1

Views

Author

Robert Israel, Sep 10 2024

Keywords

Comments

a(n) is the greatest k such that there exists d >= 1 with A001222(n-i*d) = A001222(n) for 0 <= i < k.
If m divides n, then a(n) >= a(m).
a(n) = 1 if and only if n is a power of 2.

Examples

			a(7) = 3 because 7 is prime and there is an arithmetic progression of 3 primes, namely 3, 5, 7, ending with 7 but no such arithmetic progression of 4 primes.
		

Crossrefs

Programs

  • Maple
    M:= Array(1..10):
    for n from 2 to 100 do
      v:= numtheory:-bigomega(n);
      if M[v] = 0 then M[v]:= n else M[v]:= M[v],n fi;
    od:
    for i from 1 to 10 do M[i]:= [M[i]] od:
    f:= proc(s) local n,i,m,d,v,j;
       m:= 1;
       v:= numtheory:-bigomega(s);
       member(s,M[v],n);
       for i from n-1 to 1 by -1 do
         d:= s - M[v][i];
         if s - m*d < M[v][1] then return m fi;
         for j from 2 while ListTools:-BinarySearch(M[v],s-j*d) <> 0 do od:
         m:= max(m,j);
       od;
      m;
    end proc:
    f(1):= 1:
    map(f, [$1..100]);

A093365 Least number which is the end of an arithmetic progression of n numbers that are the sums of two nonzero squares.

Original entry on oeis.org

2, 5, 8, 26, 34, 65, 146, 170, 194, 218, 242, 1445, 2225, 2309, 2393, 2477, 2561, 2645, 2729, 2813, 2897, 71633, 479581, 664445, 685697, 1141625, 1184129, 4281133, 4344889, 4408645, 31694041, 32519173, 33344305
Offset: 1

Views

Author

Hugo Pfoertner, Apr 27 2004

Keywords

Comments

The next term is > 225000000.

Examples

			Example: a(6)=65: 5=2^2+1^2, 17=4^2+1^2, 29=5^2+2^2, 41=5^2+4^2, 53=7^2+2^2, 65=7^2+4^2.
		

Crossrefs

Arithmetic progressions in A000404. For gaps see A093366.
Cf. A005115, arithmetic progressions of primes.

Extensions

More terms from Hugo Pfoertner, Apr 29 2004
Corrected erroneous terms starting at a(28) Hugo Pfoertner, Oct 15 2010

A093366 Gaps associated with the arithmetic progressions in A093365.

Original entry on oeis.org

0, 3, 3, 8, 8, 12, 24, 24, 24, 24, 24, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 2772, 21252, 21252, 21252, 42504, 42504, 63756, 63756, 63756, 825132, 825132, 825132
Offset: 1

Views

Author

Hugo Pfoertner, Apr 27 2004

Keywords

Crossrefs

Extensions

Erroneous terms a(31) and a(32) corrected by Hugo Pfoertner, Oct 15 2010

A261149 a(n) = 515486946529943 + (n-1)*30526020494970.

Original entry on oeis.org

515486946529943, 546012967024913, 576538987519883, 607065008014853, 637591028509823, 668117049004793, 698643069499763, 729169089994733, 759695110489703, 790221130984673, 820747151479643, 851273171974613, 881799192469583, 912325212964553, 942851233459523
Offset: 1

Views

Author

Marco Ripà, Aug 10 2015

Keywords

Comments

The terms n = 1..24 are prime. This is the longest known sequence of 24 primes in arithmetic progression with minimal end known as of August 10, 2015.

Examples

			a(24) = 515486946529943 + 23*30526020494970 = 1217585417914253 is prime.
		

Crossrefs

Programs

  • Magma
    [515486946529943+(n-1)*30526020494970: n in [1..20]];
    
  • Mathematica
    Table[515486946529943 + (n - 1) 30526020494970, {n, 1, 20}]
  • PARI
    Vec(-x*(484960926034973*x-515486946529943)/(x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015
  • Sage
    [515486946529943+(n-1)*30526020494970 for n in (1..20)] #
    

Formula

a(n) = 515486946529943 + (n-1)*136831*A002110(9).
G.f.: -x*(484960926034973*x-515486946529943) / (x-1)^2. - Colin Barker, Aug 25 2015

A261150 a(n) = 403185216600637 + (n-1)*2124513401010.

Original entry on oeis.org

403185216600637, 405309730001647, 407434243402657, 409558756803667, 411683270204677, 413807783605687, 415932297006697, 418056810407707, 420181323808717, 422305837209727, 424430350610737, 426554864011747, 428679377412757, 430803890813767, 432928404214777
Offset: 1

Views

Author

Marco Ripà, Aug 10 2015

Keywords

Comments

The terms n = 1..23 are prime. This is the longest known sequence of 23 primes in arithmetic progression with minimal end known as of August 10, 2015.

Examples

			a(23) = 403185216600637 + 22*2124513401010 = 449924511422857 is prime.
		

Crossrefs

Programs

  • Magma
    [403185216600637+(n-1)*2124513401010: n in [1..20]];
    
  • Mathematica
    Table[403185216600637 + (n - 1) 2124513401010, {n, 1, 23}]
  • PARI
    Vec(-x*(401060703199627*x-403185216600637)/(x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015
  • Sage
    [403185216600637+(n-1)*2124513401010 for n in (1..20)]
    

Formula

a(n) = 403185216600637 + (n-1)*9523*A002110(9).
G.f.: -x*(401060703199627*x-403185216600637) / (x-1)^2. - Colin Barker, Aug 25 2015

A261151 a(n) = 11410337850553 + (n-1)*4609098694200.

Original entry on oeis.org

11410337850553, 11871247719973, 12332157589393, 12793067458813, 13253977328233, 13714887197653, 14175797067073, 14636706936493, 15097616805913, 15558526675333, 16019436544753, 16480346414173, 16941256283593, 17402166153013, 17863076022433, 18323985891853
Offset: 1

Views

Author

Marco Ripà, Aug 10 2015

Keywords

Comments

The terms n = 1..22 are prime. This is the longest known sequence of 22 primes in arithmetic progression with minimal end known as of August 10, 2015.

Examples

			a(22) = 11410337850553 + 21*4609098694200 = 108201410428753 is prime.
		

Crossrefs

Programs

  • Magma
    [11410337850553+(n-1)*4609098694200: n in [1..20]];
    
  • Mathematica
    Table[11410337850553 + (n - 1) 4609098694200, {n, 1, 20}]
  • PARI
    Vec(-x*(10949427981133*x-11410337850553) / (x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015
  • Sage
    [11410337850553+(n-1)*4609098694200 for n in (1..20)]
    

Formula

a(n) = 11410337850553 + (n-1)*475180*A002110(8).
G.f.: -x*(10949427981133*x-11410337850553) / (x-1)^2. - Colin Barker, Aug 25 2015

A290967 Smallest known example of a 3 X 3 X 3 generalized arithmetic progression (GAP) of 27 primes, listed in increasing order.

Original entry on oeis.org

929, 3833, 4079, 6737, 6983, 7229, 8369, 9887, 10133, 11273, 11519, 13037, 14177, 14423, 14669, 15809, 17327, 17573, 18713, 18959, 20477, 21617, 21863, 22109, 24767, 25013, 27917
Offset: 1

Views

Author

Hugo Pfoertner, Aug 15 2017

Keywords

Comments

27 primes arranged in a 3 X 3 X 3 cube such that the differences between the numbers in the 3 coordinate directions are constants. The 3 constants are 2904, 3150, and 7440.
The arrangement was found in an undergraduate project at Westfield State College by Jeffrey P. Vanasse and Michael E. Guenette, working under the direction of Mathematics Department faculty members Marcus Jaiclin and Julian F. Fleron.

Examples

			:           -> +2904 ->
:          +-----+-----+-----+
:      |   |  929| 3833| 6737|\
:    +3150 | 4079| 6983| 9887| \
:      V   | 7229|10133|13037|  \
:          +-----+-----+-----+   \
:       \   \   +-----+-----+-----+
:      +7440 \  | 8369|11273|14177|\
:         \   \ |11519|14423|17327| \   \
:              \|14669|17573|20477|  \ +7440
:               +-----+-----+-----+   \   \
:                \   +-----+-----+-----+
:                 \  |15809|18713|21617|   |
:                  \ |18959|21863|24767| +3150
:                   \|22109|25013|27917|   V
:                    +-----+-----+-----+
:                     -> +2904 ->
		

Crossrefs

Cf. A005115.

Programs

  • Maple
    sort([seq(seq(seq(929+i*3150+k*2904+j*7440, k=0..2), i=0..2), j=0..2)])[];
    # Alois P. Heinz, Aug 16 2017

A291163 a(n) = smallest number k > a(n-1) maximizing the number of primes in all sums a(j)+k, j=1..(n-1), with a(1)=2.

Original entry on oeis.org

2, 3, 4, 9, 10, 27, 34, 69, 70, 429, 430, 1059, 1484, 3537, 8284, 65169, 98464, 2061999, 2210564, 10919799, 11521580, 495385137, 567955604, 1112946057, 4926960394, 365847990027
Offset: 1

Views

Author

Rainer Rosenthal and Hugo Pfoertner, Oct 07 2017

Keywords

Examples

			a(6)=27 because it is the smallest number producing 3 primes in the sums with all previous terms: a(1)+27 = 2+27 = 29, a(3)+27 = 4+27 = 31, a(5)+27 = 10+27 = 37;
a(7)=34: a(2)+34 = 3+34 = 37, a(4)+34 = 9+34 = 43, a(6)+34 = 27+34 = 61;
a(8)=69 because it is the smallest number producing 4 primes in the sums with all previous terms: a(1)+69 = 2+69 = 71, a(3)+69 = 4+69 = 73, a(5)+69 = 10+69 = 79, a(7)+69 = 34+69 = 103.
		

Crossrefs

Programs

  • PARI
    PT(x)={print1(x,", ");write("b291163.txt",n++," ",x)};
    n=0;
    ae=vector(11);
    ao=vector(11);
    ae[1]=2;PT(ae[1]);
    ao[1]=3;PT(ao[1]);
    for (m=1,10,\
       start=(ao[m]+1)/2;\
       for (kh=start,100*start,k=kh+kh;\
          for(jj=1,m,j=m-jj+1;if(!isprime(k+ao[j]),next(2)));\
          ae[m+1]=k;PT(k);break(1));\
       start=ae[m+1]/2;\
       for (kh=start,100*start,k=kh+kh+1;\
          for(jj=1,m+1,j=m-jj+2;if(!isprime(k+ae[j]),next(2)));\
          ao[m+1]=k;PT(k);break(1)))
    \\ Hugo Pfoertner, Oct 10 2017

A291525 a(n) is the largest number in an n-term AP of Chen primes.

Original entry on oeis.org

2, 3, 7, 23, 29, 257, 1439, 2351, 26561, 146639, 1891949, 2062889, 341708489, 2062232987
Offset: 1

Views

Author

Keywords

Comments

Zhou proves that a(n) exists for each n, generalizing Green & Tao (2008) from primes to Chen primes and generalizing Green & Tao (2006) from 3-AP to n-AP. Sequence is increasing by definition.

Examples

			3, 5, 7 = a(3)
5, 11, 17, 23 = a(4)
5, 11, 17, 23, 29 = a(5)
107, 137, 167, 197, 227, 257 = a(6)
179, 389, 599, 809, 1019, 1229, 1439 = a(7)
881, 1091, 1301, 1511, 1721, 1931, 2141, 2351 = a(8)
4721, 7451, 10181, 12911, 15641, 18371, 21101, 23831, 26561 = a(9)
122069, 124799, 127529, 130259, 132989, 135719, 138449, 141179, 143909, 146639 = a(10)
182549, 353489, 524429, 695369, 866309, 1037249, 1208189, 1379129, 1550069, 1721009, 1891949 = a(11)
182549, 353489, 524429, 695369, 866309, 1037249, 1208189, 1379129, 1550069, 1721009, 1891949, 2062889 = a(12)
205492409, 216843749, 228195089, 239546429, 250897769, 262249109, 273600449, 284951789, 296303129, 307654469, 319005809, 330357149, 341708489 = a(13)
19712507, 176829467, 333946427, 491063387, 648180347, 805297307, 962414267, 1119531227, 1276648187, 1433765147, 1590882107, 1747999067, 1905116027, 2062232987 = a(14)
		

Crossrefs

Programs

  • PARI
    primorial(n)=vecprod(primes(primepi(n)));
    listChen(lim)=my(v=List([2]), semi=List(), L=lim+2, p=3); forprime(q=3, L\3, forprime(r=3, min(L\q, q), listput(semi, q*r))); semi=Set(semi); forprime(q=7, lim, if(setsearch(semi, q+2), listput(v, q))); forprime(q=5, L, if(q-p==2, listput(v, p)); p=q); Set(v)
    chen=listChen(1e6); \\ Increase as needed to find more terms
    a(n,startAt=n)=n--; my(div=lcm(primorial(n+1),n)); for(i=startAt,#chen, for(j=1,i-n, my(d=chen[i]-chen[j],g); if(d%div,next); g=d/n; forstep(k=chen[j]+g, chen[i]-g, g, if(!setsearch(chen,k), next(2))); return(chen[i])))

Extensions

a(14) from Charles R Greathouse IV, Sep 06 2017
Previous Showing 21-30 of 34 results. Next