cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 60 results. Next

A005163 Number of alternating sign n X n matrices that are symmetric about a diagonal.

Original entry on oeis.org

1, 2, 5, 16, 67, 368, 2630, 24376, 293770, 4610624, 94080653, 2492747656, 85827875506, 3842929319936, 223624506056156, 16901839470598576, 1659776507866213636, 211853506422044996288, 35137231473111223912310, 7569998079873075147860464
Offset: 1

Views

Author

Keywords

Comments

Robbins's paper does not give a formula for this sequence. On the contrary he states: "Apparently these numbers do not factor into small primes, so a simple product formula seems unlikely. Of course this does not rule out other very simple formulas, but these would be more difficult to discover (let alone prove)." As far as I know no formula is currently known. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Extensions

More terms (taken from Bousquet-Mélou & Habsieger's paper) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

A050204 a(n) is the number of n X n matrices of 0's, 1's and -1's in which the entries in each row or column sum to 1.

Original entry on oeis.org

1, 2, 21, 1344, 628080, 2030271480, 49846153939785, 9350902053107858880, 13807842729396124460629536, 162526525004284727135887319788800, 15464071313054035722739424623204673044920, 12011244510939290610945342901003078567310643860160
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A005130 (Robbins numbers).
Cf. A229165 (entries in each row or column sum to 1 and there are no adjacent -1's or 1's in any row or column).
Cf. A172645 (case row and column sums are zero).

Extensions

Definition corrected by Murphy Waggoner and R. H. Hardin, Sep 24 2013
a(6)-a(8) from R. H. Hardin, Sep 25 2013
a(9)-a(12) from Andrew Howroyd, Feb 03 2021

A293179 Number of linearly chained n-tuples of 2 X 2 alternating sign matrices.

Original entry on oeis.org

2, 17, 4, 159, 8, 1129, 16, 7151
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Crossrefs

A293180 Number of linearly chained n-tuples of 3 X 3 alternating sign matrices.

Original entry on oeis.org

7, 504, 49, 98028
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Crossrefs

A378072 Number of elements in the completion of the Bruhat order on B_n.

Original entry on oeis.org

1, 2, 10, 132, 4824, 493600, 142343254
Offset: 0

Views

Author

Ludovic Schwob, Nov 16 2024

Keywords

Comments

Lascoux and Schützenberger have shown that the completion of type B Bruhat order is distributive, and have described its irreducible elements. It follows that a(n) is the number of antichains in the poset of irreducible elements of the Bruhat order on B_n.
This sequence is a type B analog of A005130, since ASMs form a lattice isomorphic to the completion of type A Bruhat order.

Crossrefs

Cf. A005130 (ASMs), A005158 (centrally symmetric ASMs), A000165 (number of elements in B_n).

Extensions

a(6) by Dmitry I. Ignatov, May 16 2025

A005161 Number of alternating sign 2n+1 X 2n+1 matrices symmetric with respect to both horizontal and vertical axes (VHSASM's).

Original entry on oeis.org

1, 1, 1, 2, 6, 33, 286, 4420, 109820, 4799134, 340879665, 42235307100, 8564558139000, 3012862604463000, 1742901718473961200, 1742218029490675762080, 2873822682985675809192288, 8167157387273280570395662320, 38402596062535617548517706584760, 310388509293255836481583597538626504
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

Programs

  • PARI
    \\ here b(n) and c(n) are A005156 and A051255.
    b(n) = prod(k=0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
    c(n) = prod(k=0, n-1, (3*k+1)*(6*k)!*(2*k)!/((4*k)!*(4*k+1)!));
    a(n) = b(n\2) * c((n+1)\2) \\ Andrew Howroyd, May 09 2023

Formula

Robbins gives a simple (conjectured) formula, which was proven by Okada.
a(2*n) = A005156(n)*A051255(n); a(2*n+1) = A005156(n)*A051255(n+1). - Paul Zinn-Justin, May 05 2023
a(n) = A005156(floor(n/2)) * A051255(ceiling(n/2)). - Andrew Howroyd, May 09 2023

Extensions

More terms (from the P. Pyatov paper) from Vladeta Jovovic, Aug 15 2008
Terms a(13) and beyond from Andrew Howroyd, May 09 2023

A005164 Number of alternating sign 2n+1 X 2n+1 matrices invariant under all symmetries of the square.

Original entry on oeis.org

1, 1, 1, 2, 4, 13, 46, 248, 1516, 13654, 142873, 2156888, 38456356, 974936056, 29540545024, 1259111024288, 64726478396896, 4641989615977216, 404396533544588344, 48825344233129714772, 7202552030561982627472, 1464587581921220811285325, 365627222082497915618219716, 125253905685915522767942493032, 52893528399758443649956432899616
Offset: 0

Views

Author

Keywords

References

  • M. Bousquet-Mélou and L. Habsieger, Sur les matrices à signes alternants, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 19-32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

Cf. A005130.

Formula

Hagendorf and Liénardy give a (conjectured) formula in terms of multiple contour integrals. - Jean Liénardy, Aug 15 2020

Extensions

a(14)-a(19) from Jean Liénardy, Aug 15 2020
a(20)-a(24) from Jean Liénardy, Sep 21 2022

A059477 3-enumeration of n X n alternating-sign matrices.

Original entry on oeis.org

1, 1, 2, 9, 90, 2025, 102060, 11573604, 2946308904, 1687603650084, 2171945897658108, 6289412333143466241, 40940643700218614247324, 599627833263501883888374756, 19747212169938041691404746667280, 1463229065460461810019231236067824400
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Crossrefs

Cf. A005130.

Programs

  • Maple
    A059477 := proc(n) local i,j,t1; t1 := 3^(n^2-n)*2^(-n^2+n); for i from 1 to n do for j from 1 to n do if j-i mod 2 <> 0 then t1 := t1*(3*j-3*i+1)/(3*j-3*i); fi; od; od; t1; end;
  • Mathematica
    a[0] = 1; a[n_?OddQ] := a[n] = 3^((1/2)*((n-1)/2 + 1)*(n-1)) * Product[(3*k - 1)!^2/(k + (n-1)/2)!^2, {k, 1, (n - 1)/2}];
    a[n_?EvenQ] := (3^((n-2)/2)*((3*(n-2))/2 + 2)!*((n - 2)/2)! * a[n - 1])/(n - 1)!^2;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 28 2017, after Ralf Stephan *)

Formula

a(2m+1)=3^(m*(m+1))*prod(k=1, m, ((3*k-1)!/(m+k)!)^2), a(2m+2)=3^m*(3*m+2)!*m!/((2*m+1)!)^2*a(2m+1). - Ralf Stephan, Apr 24 2004

A128445 Number of facets of the Alternating Sign Matrix polytope ASM(n).

Original entry on oeis.org

1, 1, 2, 8, 20, 40, 68, 104, 148, 200, 260, 328, 404, 488, 580, 680, 788, 904, 1028, 1160, 1300, 1448, 1604, 1768, 1940, 2120, 2308, 2504, 2708, 2920, 3140, 3368, 3604, 3848, 4100, 4360, 4628, 4904, 5188, 5480, 5780, 6088, 6404, 6728, 7060, 7400, 7748, 8104
Offset: 0

Views

Author

Jonathan Vos Post, May 09 2007

Keywords

Comments

The number of vertices (Bressoud) is Product_{j=0..n-1}(3j+1)!/(n+j)!.

References

  • D. M. Bressoud, Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, 1999.

Crossrefs

Cf. A005130 (number of vertices).

Programs

  • Mathematica
    Table[4((n-2)^2+1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{20,8,4},50] (* Harvey P. Dale, Mar 05 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-3,3]^n*[20;8;4])[1,1] \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*((n-2)^2 + 1) for n >= 3.
From Harvey P. Dale, Mar 05 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n > 5.
G.f.: (2*x^5+x^4+4*x^3+2*x^2-4*x+1)/(1-x)^3. (End)

Extensions

More terms from Harvey P. Dale, Mar 05 2012
Initial 3 terms and formulas corrected by Ludovic Schwob, Feb 14 2024

A384061 Number of antichains in the Bruhat order of type A_n.

Original entry on oeis.org

3, 9, 250, 67595432
Offset: 1

Views

Author

Dmitry I. Ignatov, May 18 2025

Keywords

Comments

The number of antichains in the Bruhat order of the Weyl group A_n (isomorphic to the symmetric group S_{n+1}).

Examples

			For n=1 the elements are 1 (identity) and s1, the order contains pair (1, s1). The antichains are {}, {1}, and {s1}.
For n=2 the line (Hasse) diagram is below.
       s1*s2*s1
        /   \
      s2*s1 s1*s2
       |  X  |
       s2    s1
        \   /
          1
The set of antichains is {{}, {1}, {s2}, {s2, s1}, {s1}, {s2*s1}, {s2*s1, s1*s2}, {s1*s2}, {s1*s2*s1}}.
		

References

  • A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
  • V. V. Deodhar, On Bruhat ordering and weight-lattice ordering for a Weyl group, Indagationes Mathematicae, vol. 81, 1 (1978), 423-435.

Crossrefs

Cf. A000142 (the order size), A005130 (the size of Dedekind-MacNeille completion), A384062.
Previous Showing 21-30 of 60 results. Next