A354734
a(0) = a(1) = 1; a(n) = 3 * Sum_{k=0..n-2} a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 3, 6, 21, 54, 189, 558, 1944, 6210, 21681, 72576, 254988, 878850, 3112101, 10935000, 39030660, 139001346, 499808232, 1797731496, 6506661798, 23583173328, 85847830965, 313063862436, 1145325387114, 4197826175634, 15424343762184, 56774049331356, 209400739623054
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = 3 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
nmax = 28; CoefficientList[Series[(1 - Sqrt[1 - 12 x^2 (1 + x)])/(6 x^2), {x, 0, nmax}], x]
A006849
Number of strongly self-dual planar maps with 2n edges.
Original entry on oeis.org
2, 9, 69, 567, 5112, 48114, 469179, 4691115, 47849940, 495893502, 5206886874, 55273052646, 592211326464, 6395881806180, 69555215111319, 761015877850035, 8371174661041500, 92523509359662150, 1027010953940099238
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
With[{nn = 21}, CoefficientList[InverseSeries[Series[2*x/(12*x^2 + 12*x + 3), {x, 0, nn}]] + InverseSeries[Series[2*x/(12*x^2 + 1), {x, 0, nn}]], x]] (* Gheorghe Coserea, Aug 15 2015 *)
a[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n-1)/2)*CatalanNumber[(n-1)/2]/2, 0]; Array[a, 20] (* Jean-François Alcover, Jan 17 2018 *)
-
C = n -> binomial(2*n, n) / (n + 1);
a(n) = if (n%2, ( 3^n*C(n) + 3^((n-1)/2)*C((n-1)/2) )/2, 3^n*C(n)/2);
apply(n -> a(n), vector(30, i, i)) \\ Gheorghe Coserea, Aug 04 2015
-
x='x + O('x^33); Vec(-1/2 + 1/(1 + (1 - 12*x)^(1/2)) + x/(1 + (1 - 12*x^2)^(1/2))) \\ Gheorghe Coserea, Aug 15 2015
A103937
Number of unrooted n-edge maps in the plane (planar map with a distinguished outside face).
Original entry on oeis.org
1, 2, 6, 26, 150, 1032, 8074, 67086, 586752, 5317226, 49592424, 473357994, 4606116310, 45554761836, 456848968518, 4637014782748, 47563495004742, 492422043299964, 5140194991046122, 54053208147441474, 572191817441284272, 6093471300213162072, 65245904156725935906
Offset: 0
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
a[n_] := (1/(2n)) (3^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
-
a(n) = {if(n==0, 1, (3^n*binomial(2*n,n)/(n+1) + sumdiv(n, k, if(kAndrew Howroyd, Jan 22 2025
A122871
Expansion of (1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2).
Original entry on oeis.org
1, 2, 7, 26, 106, 452, 1999, 9074, 42046, 198044, 945430, 4564100, 22243060, 109285256, 540738943, 2692103714, 13475973238, 67784600108, 342439638418, 1736727343436, 8839203054604, 45132514680248, 231121351433158
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
-
CoefficientList[Series[(1-2*x-Sqrt[1-4*x-8*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
-
x='x+O('x^50); Vec((1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2)) \\ G. C. Greubel, Mar 19 2017
-
def A122871_list(n): # n>=1
T = [0]*(n+1); R = [1]
for m in (1..n-1):
a,b,c = 1,0,0
for k in range(m,-1,-1):
r = a + 2*b + 3*c
if k < m : T[k+2] = u;
a,b,c = T[k-1],a,b
u = r
T[1] = u; R.append(u)
return R
A122871_list(23) # Peter Luschny, Nov 01 2012
A316598
a(n) is the number of rooted quadrangulations of the projective plane with n vertices.
Original entry on oeis.org
5, 38, 331, 3098, 30330, 306276, 3163737, 33252050, 354312946, 3817498004, 41510761346, 454882507468, 5017662052868, 55664182358808, 620592559670979, 6949200032479746, 78117065527443654, 881170275583541004, 9970663315885385502, 113137928354523348300
Offset: 1
- Gheorghe Coserea, Table of n, a(n) for n = 1..301
- Stavros Garoufalidis, Marcos Marino, Universality and asymptotics of graph counting problems in nonorientable surfaces, arXiv:0812.1195 [math.CO], 2008-2009.
- E. Krasko, A. Omelchenko, Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps, arXiv:1709.03225 [math.CO], 2017.
- E. Krasko, A. Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics, Volume 342, Issue 2, February 2019, Pages 584-599.
-
(-6*x + 3*Sqrt[1-12*x] - 2*Sqrt[-36*x + 6*Sqrt[1-12*x] + 3] + 3)/(6*x^2) + O[x]^20 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 24 2019 *)
-
seq(N) = {
my(x='x + O('x^(N+2)), c=(1-sqrt(1-12*x))/(6*x));
Vec((1 - x - 3*x*c - sqrt(1 - 4*x - 4*x*c))/x);
};
seq(20)
\\ test: y='x*Ser(seq(300), 'x); 0 == 3*x^3*y^4 + (12*x^3 - 6*x^2)*y^3 + (18*x^3 + 24*x^2 + x)*y^2 + (12*x^3 + 66*x^2 + 8*x - 2)*y + (3*x^3 + 36*x^2 + 10*x)
A345189
Number of rows with the value "false" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
Original entry on oeis.org
1, 1, 6, 41, 330, 2882, 26604, 255313, 2521986, 25473638, 261898548, 2731724778, 28836047844, 307477681188, 3306988334808, 35833139582529, 390803960909106, 4286644113507902, 47258491871201508, 523372307883323566, 5819831138546794860, 64954314678710555612, 727371707764232349672
Offset: 1
-
CoefficientList[Series[(-2 -Sqrt[1-12*x] +Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
-
my(x='x+O('x^30)); Vec((-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6)
-
def A345189_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
a=A345189_list(40); a[1:] # G. C. Greubel, May 20 2022
A345190
Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
Original entry on oeis.org
1, 5, 30, 229, 1938, 17530, 165852, 1621133, 16242474, 165923854, 1721675460, 18095802306, 192256162740, 2061367432212, 22276538889912, 242387718986301, 2653259550491034, 29198054511893638, 322835545567447092, 3584671507685675894, 39955514234936341980, 446897274497509974508
Offset: 1
-
CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
-
my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)
-
def A345190_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
a=A345190_list(40); a[1:] # G. C. Greubel, May 20 2022
A376086
a(0) = 1; a(n) = Sum_{k=0..n-1} (3*k+2) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 2, 14, 160, 2444, 45792, 1005480, 25169760, 705321200, 21841420384, 740194188032, 27243674154368, 1082259310732096, 46159435144505600, 2104195645965319680, 102113572703197079040, 5256795948307255075584, 286171738279517073904128, 16427146596936396844976640
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[(3 k + 2) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; A[] = 0; Do[A[x] = 1 + 2 x A[x]^2 + 3 x^2 A'[x] A[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A101486
Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.
Original entry on oeis.org
1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0
1,2,9,54,378,2916,24057,208494,1876446,17399772,
1,3,17,119,932,7838,69275,635279,5994584,57872666,
1,3,18,134,1111,9833,90959,868827,8504314,84866778,
1,3,18,135,1133,10176,95635,928442,9236144,93646430,
1,3,18,135,1134,10205,96191,937361,9365984,95427597,
1,3,18,135,1134,10206,96227,938179,9381050,95673739,
1,3,18,135,1134,10206,96228,938222,9382179,95697199,
1,3,18,135,1134,10206,96228,938223,9382229,95698688,
-
nmax = 9;
b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1);
c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
A151383
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, 1)}.
Original entry on oeis.org
1, 3, 18, 135, 1134, 10206, 96228, 938223, 9382230, 95698746, 991787004, 10413763542, 110546105292, 1184422556700, 12791763612360, 139110429284415, 1522031755700070, 16742349312700770, 185047018719324300, 2054021907784499730, 22887672686741568420, 255925794588110265060
Offset: 0
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
Comments