cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A354734 a(0) = a(1) = 1; a(n) = 3 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 3, 6, 21, 54, 189, 558, 1944, 6210, 21681, 72576, 254988, 878850, 3112101, 10935000, 39030660, 139001346, 499808232, 1797731496, 6506661798, 23583173328, 85847830965, 313063862436, 1145325387114, 4197826175634, 15424343762184, 56774049331356, 209400739623054
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 3 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[(1 - Sqrt[1 - 12 x^2 (1 + x)])/(6 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 3 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 12 * x^2 * (1 + x))) / (6 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(1/8)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A006849 Number of strongly self-dual planar maps with 2n edges.

Original entry on oeis.org

2, 9, 69, 567, 5112, 48114, 469179, 4691115, 47849940, 495893502, 5206886874, 55273052646, 592211326464, 6395881806180, 69555215111319, 761015877850035, 8371174661041500, 92523509359662150, 1027010953940099238
Offset: 1

Views

Author

Keywords

Comments

A planar map is called strongly self-dual if it is self-dual with respect to an orientation-preserving duality. - Valery A. Liskovets, May 27 2006

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn = 21}, CoefficientList[InverseSeries[Series[2*x/(12*x^2 + 12*x + 3), {x, 0, nn}]] + InverseSeries[Series[2*x/(12*x^2 + 1), {x, 0, nn}]], x]] (* Gheorghe Coserea, Aug 15 2015 *)
    a[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n-1)/2)*CatalanNumber[(n-1)/2]/2, 0]; Array[a, 20] (* Jean-François Alcover, Jan 17 2018 *)
  • PARI
    C = n -> binomial(2*n, n) / (n + 1);
    a(n) = if (n%2, ( 3^n*C(n) + 3^((n-1)/2)*C((n-1)/2) )/2, 3^n*C(n)/2);
    apply(n -> a(n), vector(30, i, i)) \\ Gheorghe Coserea, Aug 04 2015
    
  • PARI
    x='x + O('x^33); Vec(-1/2 + 1/(1 + (1 - 12*x)^(1/2)) + x/(1 + (1 - 12*x^2)^(1/2))) \\ Gheorghe Coserea, Aug 15 2015

Formula

a(2k) = 3^(2k)C(2k)/2=A005159(2k)/2 (4k edges, k>0) and a(2k-1) = (3^(2k-1)C(2k-1)+3^(k-1)C(k-1))/2 =(A005159(2k-1)+A005159(k-1))/2 (4k-2 edges, k>0) where C(n) = A000108(n) (Catalan numbers). - Valery A. Liskovets, May 27 2006
G.f.: -1/2 + 1/(1 + (1 - 12*x)^(1/2)) + x/(1 + (1 - 12*x^2)^(1/2)). - Gheorghe Coserea, Aug 15 2015

Extensions

More terms from Valery A. Liskovets, May 27 2006

A103937 Number of unrooted n-edge maps in the plane (planar map with a distinguished outside face).

Original entry on oeis.org

1, 2, 6, 26, 150, 1032, 8074, 67086, 586752, 5317226, 49592424, 473357994, 4606116310, 45554761836, 456848968518, 4637014782748, 47563495004742, 492422043299964, 5140194991046122, 54053208147441474, 572191817441284272, 6093471300213162072, 65245904156725935906
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Antidiagonal sums of A380240.

Programs

  • Mathematica
    a[n_] := (1/(2n)) (3^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (3^n*binomial(2*n,n)/(n+1) + sumdiv(n, k, if(kAndrew Howroyd, Jan 22 2025

Formula

a(n)=(1/(2n))[3^n*binomial(2n, n)/(n+1) +sum_{0A000010, q(n)=0 if n is even and q(n)=3^((n-1)/2)binomial(n-1, (n-1)/2)/(n+1) if n is odd.

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 21 2025

A122871 Expansion of (1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2).

Original entry on oeis.org

1, 2, 7, 26, 106, 452, 1999, 9074, 42046, 198044, 945430, 4564100, 22243060, 109285256, 540738943, 2692103714, 13475973238, 67784600108, 342439638418, 1736727343436, 8839203054604, 45132514680248, 231121351433158
Offset: 0

Views

Author

Paul Barry, Sep 16 2006

Keywords

Comments

Series reversion of x/(1+2x+3x^2). Binomial transform is A107264. Counts colored Motzkin paths. Second binomial transform of 1,0,3,0,18,0,... or 3^n*binomial(n) (A005159) with interpolated zeros.
Hankel transform is 3^binomial(n+1,2). - Paul Barry, Oct 01 2009

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-4*x-8*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    x='x+O('x^50); Vec((1 - 2*x - sqrt(1 - 4*x - 8*x^2))/(6*x^2)) \\ G. C. Greubel, Mar 19 2017
  • Sage
    def A122871_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*b + 3*c
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A122871_list(23)  # Peter Luschny, Nov 01 2012
    

Formula

E.g.f.: exp(2*x)*Bessel_I(1, sqrt(3)*2*x)/(sqrt(3)x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(k)3^k*2^(n-2k).
G.f.: 1/(1-2x-3x^2/(1-2x-3x^2/(1-2x-3x^2/(1-2x-3x^2/(1-.... (continued fraction). - Paul Barry, Oct 01 2009
D-finite with recurrence: (n+2)*a(n) - 2*(2n+1)*a(n-1) + 8*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2*sqrt(9+5*sqrt(3))*(2+2*sqrt(3))^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A316598 a(n) is the number of rooted quadrangulations of the projective plane with n vertices.

Original entry on oeis.org

5, 38, 331, 3098, 30330, 306276, 3163737, 33252050, 354312946, 3817498004, 41510761346, 454882507468, 5017662052868, 55664182358808, 620592559670979, 6949200032479746, 78117065527443654, 881170275583541004, 9970663315885385502, 113137928354523348300
Offset: 1

Views

Author

Gheorghe Coserea, Jul 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    (-6*x + 3*Sqrt[1-12*x] - 2*Sqrt[-36*x + 6*Sqrt[1-12*x] + 3] + 3)/(6*x^2) + O[x]^20 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 24 2019 *)
  • PARI
    seq(N) = {
      my(x='x + O('x^(N+2)), c=(1-sqrt(1-12*x))/(6*x));
      Vec((1 - x - 3*x*c - sqrt(1 - 4*x - 4*x*c))/x);
    };
    seq(20)
    \\ test: y='x*Ser(seq(300), 'x); 0 == 3*x^3*y^4 + (12*x^3 - 6*x^2)*y^3 + (18*x^3 + 24*x^2 + x)*y^2 + (12*x^3 + 66*x^2 + 8*x - 2)*y + (3*x^3 + 36*x^2 + 10*x)

Formula

G.f. A(x) = (1-x-3*x*c - sqrt(1-4*x-4*x*c))/x, where c=(1-sqrt(1-12*x))/(6*x). (see eqn. (117) in Garoufalidis link)
G.f. y=A(x) satisfies:
0 = 3*x^3*y^4 + 6*x^2*(2*x - 1)*y^3 + x*(18*x^2 + 24*x + 1)*y^2 + 2*(6*x^3 + 33*x^2 + 4*x - 1)*y + x*(3*x^2 + 36*x + 10).
0 = 13*x*(4*x + 1)*(12*x - 1)^3*y''''' + (36864*x^4 + 3840*x^3 + 8832*x^2 + 1556*x - 65)*(12*x - 1)^2*y'''' + 16*(248832*x^4 - 5184*x^3 + 29799*x^2 + 2418*x - 259)*(12*x - 1)*y''' + 72*(1382400*x^4 - 201600*x^3 + 144312*x^2 - 4157*x - 492)*y'' + 144*(276480*x^3 - 51840*x^2 + 31488*x - 979)*y' + 165888*y.
0 = x*(4*x + 1)*(48*x^2 - 6*x + 1)*(12*x - 1)^3*y'''' + 2*(10368*x^4 + 12*x^2 + 47*x - 2)*(12*x - 1)^2*y''' + 6*(86400*x^4 - 10800*x^3 + 2472*x^2 + 132*x - 19)*(12*x - 1)*y'' + (2488320*x^4 - 622080*x^3 + 186192*x^2 - 10728*x - 144)*y' + (10368*x - 648)*y.
a(n) ~ 2^(2*n + 1/2) * 3^(n + 1/2)/ (Gamma(3/4) * n^(5/4)) * (1 - sqrt(3) * Gamma(3/4) / (sqrt(2*Pi) * n^(1/4))). - Vaclav Kotesovec, Oct 04 2019

A345189 Number of rows with the value "false" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

Original entry on oeis.org

1, 1, 6, 41, 330, 2882, 26604, 255313, 2521986, 25473638, 261898548, 2731724778, 28836047844, 307477681188, 3306988334808, 35833139582529, 390803960909106, 4286644113507902, 47258491871201508, 523372307883323566, 5819831138546794860, 64954314678710555612, 727371707764232349672
Offset: 1

Views

Author

Michel Marcus, Jun 10 2021

Keywords

Crossrefs

Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345190 (true rows).

Programs

  • Mathematica
    CoefficientList[Series[(-2 -Sqrt[1-12*x] +Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6)
    
  • SageMath
    def A345189_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
    a=A345189_list(40); a[1:] # G. C. Greubel, May 20 2022

Formula

G.f.: (-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6.
a(n) = 2*A005159(n-1) - A345190(n). - G. C. Greubel, May 20 2022

A345190 Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

Original entry on oeis.org

1, 5, 30, 229, 1938, 17530, 165852, 1621133, 16242474, 165923854, 1721675460, 18095802306, 192256162740, 2061367432212, 22276538889912, 242387718986301, 2653259550491034, 29198054511893638, 322835545567447092, 3584671507685675894, 39955514234936341980, 446897274497509974508
Offset: 1

Views

Author

Michel Marcus, Jun 10 2021

Keywords

Crossrefs

Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345189 (false rows).

Programs

  • Mathematica
    CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)
    
  • SageMath
    def A345190_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
    a=A345190_list(40); a[1:] # G. C. Greubel, May 20 2022

Formula

G.f.: (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6.
a(n) = 2*A005159(n-1) - A345189(n). - G. C. Greubel, May 20 2022

A376086 a(0) = 1; a(n) = Sum_{k=0..n-1} (3*k+2) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 2, 14, 160, 2444, 45792, 1005480, 25169760, 705321200, 21841420384, 740194188032, 27243674154368, 1082259310732096, 46159435144505600, 2104195645965319680, 102113572703197079040, 5256795948307255075584, 286171738279517073904128, 16427146596936396844976640
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(3 k + 2) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 0; Do[A[x] = 1 + 2 x A[x]^2 + 3 x^2 A'[x] A[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 2 * x * A(x)^2 + 3 * x^2 * A'(x) * A(x).

A101486 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Comments

Rows converge to A005159.
First row is A000168.

Examples

			1,2,9,54,378,2916,24057,208494,1876446,17399772,
1,3,17,119,932,7838,69275,635279,5994584,57872666,
1,3,18,134,1111,9833,90959,868827,8504314,84866778,
1,3,18,135,1133,10176,95635,928442,9236144,93646430,
1,3,18,135,1134,10205,96191,937361,9365984,95427597,
1,3,18,135,1134,10206,96227,938179,9381050,95673739,
1,3,18,135,1134,10206,96228,938222,9382179,95697199,
1,3,18,135,1134,10206,96228,938223,9382229,95698688,
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1);
    c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+4))/[(1-C(t)^(k+2))*(1-C(t)^(k+3))], with B(t) the g.f. of A005159 and C(t) the g.f. of A101487.

A151383 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, 1)}.

Original entry on oeis.org

1, 3, 18, 135, 1134, 10206, 96228, 938223, 9382230, 95698746, 991787004, 10413763542, 110546105292, 1184422556700, 12791763612360, 139110429284415, 1522031755700070, 16742349312700770, 185047018719324300, 2054021907784499730, 22887672686741568420, 255925794588110265060
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

Apparently a duplicate of A005159. [R. J. Mathar, Dec 13 2008]

Programs

  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
Previous Showing 21-30 of 30 results.