cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A230370 Voids left after packing 3 curves coins patterns (3c3s type) into fountain of coins base n.

Original entry on oeis.org

0, 0, 3, 6, 13, 19, 39, 54, 66, 85, 100, 123, 141, 168, 189, 220, 244, 279, 306, 345, 375, 418, 451, 498, 534, 585, 624, 679, 721, 780, 825, 888, 936, 1003, 1054, 1125, 1179, 1254, 1311, 1390, 1450, 1533, 1596, 1683
Offset: 1

Views

Author

Kival Ngaokrajang, Oct 17 2013

Keywords

Comments

Refer to arrangement same as A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". The 3 curves coins patterns consist of a part of each coin circumference and forms a continuous area. There are total 4 distinct patterns. For selected pattern, I would like to call "3c3s" type as it cover 3 coins and symmetry. When packing 3c3s into fountain of coins base n, the total number of 3c3s is A008805, the coins left is A008795 and voids left is a(n). See illustration in links.

Crossrefs

A001399, A230267, A230276 (5-curves coins patterns); A074148, A229093, A220154 (4-curves coins patterns); A008795 (3-curves coins patterns).

Formula

G.f.: x^3*(11*x^8 - 5*x^7 - 21*x^6 + 6*x^5 + 9*x^4 + x^2 + 3*x + 3)/((1-x)*(1-x^2)^2) (conjectured). Ralf Stephan, Oct 19 2013

A291148 Expansion of 1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - x^6/(1 - ... - x^n/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, 0, -1, 0, -1, -1, -1, -2, -2, -4, -4, -7, -9, -13, -19, -25, -38, -51, -75, -104, -149, -211, -298, -426, -600, -857, -1211, -1724, -2444, -3471, -4930, -6995, -9940, -14104, -20038, -28444, -40397, -57362, -81453, -115675, -164250, -233262, -331227
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2017

Keywords

Comments

The sequence b(n>=1) = 1, 0, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, ... of absolute values counts fountains of n coins that cannot be separated into two or more fountains by cutting vertically through the fountain without splitting a coin. (This separation requires that the fountain is a left-right sequence of more elementary fountains counted by b(n).) A005169(n) = Sum_{compositions n=n1+n2+n3+...} Product b(n1)*b(n2)*.... - R. J. Mathar, Aug 22 2018

Examples

			G.f. = 1 - x - x^3 - x^5 - x^6 - x^7 - 2*x^8 - 2*x^9 - ...
		

Crossrefs

Formula

Convolution inverse of A005169.
a(n) ~ c * d^n, where d = 1.42009048763893649946106129818306075366296460727614... and c = -0.093433697175825717154301151812109730023054876584907211486145769... - Vaclav Kotesovec, Oct 16 2017

A138158 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and path length k; 0 <= k <= n(n+1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 3, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 21 2008

Keywords

Comments

T(n,k) is the number of Dyck paths of semilength n for which the sum of the heights of the vertices that terminate an upstep (i.e. peaks and doublerises) is k. Example: T(4,7)=3 because we have UUDUDUDD, UDUUUDDD and UUUDDDUD.
See related triangle A227543.
Row n contains 1+n(n+1)/2 terms.
The maximum in each row of the triangle is A274291. - Torsten Muetze, Nov 28 2018
It appears that for j = 0,1,...,n-1 the first j terms of the rows in reversed order are given by A000041(j), the partition numbers. - Geoffrey Critzer, Jul 14 2020

Examples

			T(2,2)=1 because /\ is the only ordered tree with 2 edges and path length 2.
Triangle starts
 1,
 0, 1,
 0, 0, 1, 1,
 0, 0, 0, 1, 2, 1, 1,
 0, 0, 0, 0, 1, 3, 3, 3, 2, 1, 1,
 0, 0, 0, 0, 0, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1,
 0, 0, 0, 0, 0, 0, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1,
 0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1,
... [_Joerg Arndt_, Feb 21 2014]
		

Crossrefs

Programs

  • Maple
    P[0]:=1: for n to 7 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0.. n-1)))) end do: for n from 0 to 7 do seq(coeff(P[n], t, j),j=0..(1/2)*n*(n+1)) end do; # yields sequence in triangular form
  • Mathematica
    nmax = 7;
    P[0] = 1; P[n_] := P[n] = t*Sum[P[j]*P[n-j-1]*t^(n-j-1), {j, 0, n-1}];
    row[n_] := row[n] = CoefficientList[P[n] + O[t]^(n(n+1)/2 + 1), t];
    T[n_, k_] := row[n][[k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n(n+1)/2}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
    nn = 10; f[z_, u_] := Sum[Sum[a[n, k] u^k z^n, {k, 0, Binomial[n, 2]}], {n, 1, nn}]; sol = SolveAlways[Series[0 == f[z, u] - z/(1 - f[u z, u]) , {z, 0, nn}], {z, u}];Level[Table[Table[a[n, k], {k, 0, Binomial[n, 2]}], {n, 1, nn}] /.
    sol, {2}] // Grid (* Geoffrey Critzer, Jul 14 2020 *)

Formula

G.f. G(t,z) satisfies G(t,z) = 1+t*z*G(t,z)*G(t,t*z).
Row generating polynomials P[n]=P[n](t) are given by P[0]=1, P[n] = t * Sum( P[j]*P[n-j-1]*t^(n-1-j), j=0..n-1 ) (n>=1).
Row sums are the Catalan numbers (A000108).
Sum of entries in column n = A005169(n).
Sum_{k=0..n(n+1)/2} k*T(n,k) = A000346(n-1).
T(n,k) = A047998(k,n).
G.f.: 1/(1 - x*y/(1 - x*y^2/(1 - x*y^3/(1 - x*y^4/(1 - x*y^5)/(1 - ... ))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017

A005166 a(0) = 1; a(n) = (1 + a(0)^3 + ... + a(n-1)^3)/n (not always integral!).

Original entry on oeis.org

1, 2, 5, 45, 22815, 2375152056927, 2233176271342403475345148513527359103
Offset: 0

Views

Author

Keywords

Comments

Terms are integers until n=A097398(2,2)=89.
Guy states that by computing the sequence modulo 89 it is easy to show that a(89) is not integral. - T. D. Noe, Sep 17 2007

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_]:=(1 + Sum[a[k]^3, {k,0,n-1}])/n; Array[a,7,0] (* Stefano Spezia, Oct 13 2024 *)

A088357 G.f. = continued fraction: A(x)=1/(1-x/(1-2*x^2/(1-3*x^3/(1-4*x^4/(...))))).

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 27, 55, 127, 285, 647, 1457, 3297, 7489, 16945, 38523, 87293, 198179, 449907, 1021135, 2318527, 5263581, 11950967, 27133985, 61609953, 139888777, 317629465, 721215027, 1637598485, 3718378619, 8443065363, 19171129327
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]*x^Range[nmax + 1]]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    S=1; L=30; for(k=1,L,m=L-k+1; S=1/(1-m*x^m*S)+x*O(x^L)); A(x)=S; a(n)=polcoeff(A(x),n,x)

Formula

G.f.: T(0), where T(k) = 1 - x^(k+1)*(k+1)/( x^(k+1)*(k+1) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 26 2013
a(n) ~ c * d^n, where d = 2.2706470084004562621321821916243432273516... and c = 0.1745837410025587240288929391139119506... - Vaclav Kotesovec, Aug 25 2017

A192729 G.f. satisfies: A(x) = 1/(1 - x*A(x)^2/(1 - x^2*A(x)^2/(1 - x^3*A(x)^2/(1 - x^4*A(x)^2/(1 - ...))))), a recursive continued fraction.

Original entry on oeis.org

1, 1, 3, 13, 63, 329, 1808, 10299, 60271, 360198, 2189111, 13488379, 84066176, 529037390, 3357014851, 21455604032, 137993279809, 892448240335, 5800266701499, 37864046563210, 248158092634265, 1632254493141021, 10771183395497445
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 329*x^5 + 1808*x^6 +...
which satisfies A(x) = P(x)/Q(x) where
P(x) = 1 - x^2*A(x)^2/(1-x) + x^6*A(x)^4/((1-x)*(1-x^2)) - x^12*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Q(x) = 1 - x*A(x)^2/(1-x) + x^4*A(x)^4/((1-x)*(1-x^2)) - x^9*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Explicitly, the above series begin:
P(x) = 1 - x^2 - 3*x^3 - 10*x^4 - 42*x^5 - 202*x^6 - 1060*x^7 - 5862*x^8 - 33592*x^9 - 197585*x^10 - 1185867*x^11 - 7233049*x^12 +...
Q(x) = 1 - x - 3*x^2 - 10*x^3 - 41*x^4 - 198*x^5 - 1041*x^6 - 5766*x^7 - 33074*x^8 - 194674*x^9 - 1168988*x^10 - 7132869*x^11 - 44097821*x^12 +...
		

Crossrefs

Programs

  • PARI
    /* As a recursive continued fraction: */
    {a(n)=local(A=1+x,CF);for(i=1,n,CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*A^2*CF+x*O(x^n)));A=CF);polcoeff(A,n)}
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);for(i=1,n,
    P=sum(m=0,sqrtint(n),x^(m*(m+1))/prod(k=1,m,1-x^k)*(-A^2+x*O(x^n))^m);
    Q=sum(m=0,sqrtint(n),x^(m^2)/prod(k=1,m,1-x^k)*(-A^2+x*O(x^n))^m);A=P/Q);polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^2)^n / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^2)^n / Product_{k=1..n} (1-x^k),
due to Ramanujan's continued fraction identity.
a(n) ~ c * d^n / n^(3/2), where d = 7.0656326355634513691927118582399... and c = 0.2386935555822482686868972746... - Vaclav Kotesovec, Aug 25 2017

A192730 G.f. satisfies: A(x) = 1/(1 - x*A(x)^3/(1 - x^2*A(x)^3/(1 - x^3*A(x)^3/(1 - x^4*A(x)^3/(1 - ...))))), a recursive continued fraction.

Original entry on oeis.org

1, 1, 4, 23, 151, 1075, 8075, 62996, 505501, 4145684, 34594540, 292794156, 2507383158, 21686318745, 189162110341, 1662142617881, 14698913545378, 130723572694407, 1168419986539867, 10490326933563842, 94564400499455397, 855552893388047193
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 151*x^4 + 1075*x^5 + 8075*x^6 +...
which satisfies A(x) = P(x)/Q(x) where
P(x) = 1 - x^2*A(x)^3/(1-x) + x^6*A(x)^6/((1-x)*(1-x^2)) - x^12*A(x)^9/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^12/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Q(x) = 1 - x*A(x)^3/(1-x) + x^4*A(x)^6/((1-x)*(1-x^2)) - x^9*A(x)^9/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^12/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Explicitly, the above series begin:
P(x) = 1 - x^2 - 4*x^3 - 19*x^4 - 113*x^5 - 763*x^6 - 5557*x^7 - 42472*x^8 - 335804*x^9 - 2723164*x^10 - 22523476*x^11 - 189267247*x^12 +...
Q(x) = 1 - x - 4*x^2 - 19*x^3 - 112*x^4 - 757*x^5 - 5517*x^6 - 42188*x^7 - 333673*x^8 - 2706555*x^9 - 22390279*x^10 - 188175369*x^11 - 1602132261*x^12 +...
		

Crossrefs

Programs

  • PARI
    /* As a recursive continued fraction: */
    {a(n)=local(A=1+x,CF);for(i=1,n,CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*A^3*CF+x*O(x^n)));A=CF);polcoeff(A,n)}
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);for(i=1,n,
    P=sum(m=0,sqrtint(n),x^(m*(m+1))/prod(k=1,m,1-x^k)*(-A^3+x*O(x^n))^m);
    Q=sum(m=0,sqrtint(n),x^(m^2)/prod(k=1,m,1-x^k)*(-A^3+x*O(x^n))^m);A=P/Q);polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^3)^n / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^3)^n / Product_{k=1..n} (1-x^k),
due to Ramanujan's continued fraction identity.
a(n) ~ c * d^n / n^(3/2), where d = 9.72359087408044730447308019524191930733163... and c = 0.151620024312256318854728680725808488795... - Vaclav Kotesovec, Nov 18 2017

A192737 G.f. satisfies: A(x) = 1/(1 - x*A(x)/(1 - x*A(x)^2/(1 - x*A(x)^3/(1 - x*A(x)^4/(1 - ...))))), a recursive continued fraction.

Original entry on oeis.org

1, 1, 3, 13, 68, 399, 2531, 16994, 119199, 865849, 6474177, 49616016, 388484212, 3100311228, 25172981053, 207665895001, 1738775327319, 14764815028481, 127076945426555, 1108103873824072, 9787004793441886, 87539719110388691
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2531*x^6 +...
The g.f. A = A(x) satisfies A = P(x)/Q(x) where
P(x) = 1 - x*A^2/(1-A) + x^2*A^6/((1-A)*(1-A^2)) - x^3*A^12/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^20/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) -+...
Q(x) = 1 - x*A/(1-A) + x^2*A^4/((1-A)*(1-A^2)) - x^3*A^9/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^16/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) -+...
Explicitly, the above series begin:
P(x) = exp(1)*(1 - 1/4*x - 283/288*x^2 - 6223/1152*x^3 - 140734037/4147200*x^4 - 3826874463/16588800*x^5 - 290665690804549/175575859200*x^6 +...);
Q(x) = exp(1)*(1 - 5/4*x - 787/288*x^2 - 13731/1152*x^3 - 271921637/4147200*x^4 - 6765586315/16588800*x^5 - 481505562390493/175575859200*x^6 +...).
		

Crossrefs

Programs

  • PARI
    /* As a recursive continued fraction: */
    {a(n)=local(A=1+x, CF); for(i=1, n, CF=1+x; for(k=0, n, CF=1/(1-x*A^(n-k+1)*CF+x*O(x^n))); A=CF); polcoeff(A, n)}
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {a(n)=local(A=1+x, P, Q); for(i=1, n,
    P=sum(m=0, 2*n, (-x)^m*A^(m*(m+1))/prod(k=1, m, 1-A^k)/exp(1)+x*O(x^(2*n)));
    Q=sum(m=0, 2*n, (-x)^m*A^(m^2)/prod(k=1, m, 1-A^k)/exp(1)+x*O(x^(2*n))); A=round(P/Q)); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-x)^n * A(x)^(n*(n+1)) / Product_{k=1..n} (1-A(x)^k),
Q(x) = Sum_{n>=0} (-x)^n * A(x)^(n^2) / Product_{k=1..n} (1-A(x)^k),
due to Ramanujan's continued fraction identity.

A197870 Expansion of false theta series variation of Ramanujan theta function psi(x).

Original entry on oeis.org

1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 18 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^3 - x^6 + x^10 - x^15 + x^21 - x^28 + x^36 - x^45 + x^55 + ...
G.f. = q - q^9 + q^25 - q^49 + q^81 - q^121 + q^169 - q^225 + q^289 - q^361 + ...
		

Crossrefs

Cf. A010054.
Cf. A005169 (g.f.: G(0), where G(k) = 1/( 1 - q^(k+1)*G(k+1) ) ).

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2), {k, 0, (Sqrt[8 n + 1] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jul 21 2014 *)
    a[n_] := Module[{r, k}, r = Reduce[k >= 0 && 2n == k(k+1), k, Integers]; If[r === False, 0, (-1)^r[[2]] ] ]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 27 2016 *)
  • PARI
    {a(n) = local(x); if( issquare( 8*n + 1, &x), (-1)^(x\2), 0)};

Formula

G.f.: Sum_{k>=0} (-1)^k * x^(k*(k+1)/2). |a(n)| = A010054(n).
G.f.: G(0) where G(k) = 1 - q^(k+1)*G(k+1) = 1 - q*(1 - q^2*(1 - q^3*(1 - q^4*(1 - ...)))). - Joerg Arndt, Jun 29 2013
G.f.: Sum_{k>=0} a(k) * x^(3*k) = 1 / (1+x) + x*(1-x) / ((1+x)*(1+x^2)*(1+x^3)) + x^2*(1-x)*(1-x^3) / ((1+x)*(1+x^2)*...*(1+x^5)) + ... - Michael Somos, Jul 21 2014

A224898 G.f.: Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 0, -1, -2, -2, -4, -4, -5, -5, -6, -5, -6, -4, -4, -3, -2, 1, 1, 4, 5, 8, 9, 12, 12, 15, 15, 17, 16, 18, 15, 16, 13, 13, 8, 7, 1, 0, -7, -9, -17, -19, -27, -29, -37, -38, -46, -46, -53, -51, -57, -53, -57, -51, -53, -45, -45, -32, -31
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Conjecture: a(n+1) = A286744(n) - A286745(n). - George Beck May 13 2017

Examples

			G.f.: A(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...
where
A(x) = 1 - x^2/(1-x) + x^6/((1-x)*(1-x^2)) - x^12/((1-x)*(1-x^2)*(1-x^3)) + x^20/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) - x^30/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) +...
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k,1+x*O(x^n))),n)
    for(n=0, 80, print1(a(n), ", "))
Previous Showing 31-40 of 79 results. Next