cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 86 results. Next

A341457 Number of partitions of n into 9 nonprime parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38, 44, 51, 60, 67, 79, 91, 104, 120, 138, 154, 180, 203, 232, 262, 300, 335, 385, 428, 489, 543, 620, 688, 782, 861, 979, 1078, 1222, 1341, 1518, 1661, 1875, 2048, 2308
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i), t-1))))
        end:
    a:= n-> b(n$2, 9):
    seq(a(n), n=9..68);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 9];
    Table[a[n], {n, 9, 68}] (* Jean-François Alcover, Feb 23 2022, after Alois P. Heinz *)

A341462 Number of partitions of n into 4 distinct nonprime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 6, 10, 9, 13, 12, 17, 17, 21, 21, 28, 28, 34, 33, 42, 43, 51, 53, 61, 63, 73, 76, 87, 91, 102, 104, 119, 123, 137, 143, 157, 164, 179, 187, 205, 215, 232, 239, 262, 272, 294, 309, 327, 341, 365, 381, 406, 427, 448, 465
Offset: 19

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i-1), t-1))))
        end:
    a:= n-> b(n$2, 4):
    seq(a(n), n=19..78);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i - 1], t - 1]]]];
    a[n_] := b[n, n, 4];
    Table[a[n], {n, 19, 78}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n,{4}],Length[#]==Length[ Union[ #]] && NoneTrue[#,PrimeQ]&]],{n,19,80}] (* Harvey P. Dale, Nov 07 2021 *)

A118255 a(1)=1, then a(n)=2*a(n-1) if n is prime, a(n)=2*a(n-1)+1 if n not prime.

Original entry on oeis.org

1, 2, 4, 9, 18, 37, 74, 149, 299, 599, 1198, 2397, 4794, 9589, 19179, 38359, 76718, 153437, 306874, 613749, 1227499, 2454999, 4909998, 9819997, 19639995, 39279991, 78559983, 157119967, 314239934, 628479869, 1256959738, 2513919477, 5027838955, 10055677911
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Comments

In base 2 a(n) is the concatenation for i=1 to n of A005171(i).

Examples

			a(2) = 2*1 = 2 as 2 is prime;
a(3) = 2*2 = 4 as 3 is prime;
a(4) = 2*4+1 = 9 as 4 is composite;
a(5) = 2*9 = 18 as 5 is prime.
		

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(1); fi; if isprime(n) then 2*f(n-1) else 2*f(n-1)+1; fi; end; # N. J. A. Sloane
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[PrimeQ[n+1],2a,2a+1]}; Transpose[NestList[nxt,{1,1},40]][[2]] (* Harvey P. Dale, Jan 22 2015 *)
    Array[FromDigits[#, 2] &@ Array[Boole[! PrimeQ@ #] &, #] &, 34] (* Michael De Vlieger, Nov 01 2016 *)
  • Python
    from sympy import isprime, prime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, n+1)), 2)
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 2 * an + int(not isprime(k))
            yield an
    print(list(islice(agen(), 34))) # Michael S. Branicky, Jan 10 2022

Formula

a(n) = floor(k * 2^n) where k = 0.585317... = 1 - A051006. [Charles R Greathouse IV, Dec 27 2011]
From Ridouane Oudra, Aug 26 2019: (Start)
a(n) = 2^n - 1 - (1/2)*(pi(n) + Sum_{i=1..n} 2^(n-i)*pi(i)), where pi = A000720
a(n) = A000225(n) - A072762(n). (End)

Extensions

Corrected by Omar E. Pol, Nov 08 2007
Corrections verified by N. J. A. Sloane, Nov 17 2007

A125070 a(n) = number of nonzero exponents in the prime factorization of n which are not primes.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Leroy Quet, Nov 18 2006

Keywords

Examples

			720 has the prime-factorization of 2^4 *3^2 *5^1. Two of these exponents, 4 and 1, are not primes. So a(720) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length @ Select[Last /@ FactorInteger[n], ! PrimeQ[ # ] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
  • PARI
    A125070(n) = vecsum(apply(e -> if(isprime(e),0,1), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017

Formula

From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = A005171(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} (P(p) - P(p+1)) = 0.39847584805803104040..., where P(s) is the prime zeta function. (End)

Extensions

Extended by Ray Chandler, Nov 19 2006

A179278 Largest nonprime integer <= n.

Original entry on oeis.org

1, 1, 1, 4, 4, 6, 6, 8, 9, 10, 10, 12, 12, 14, 15, 16, 16, 18, 18, 20, 21, 22, 22, 24, 25, 26, 27, 28, 28, 30, 30, 32, 33, 34, 35, 36, 36, 38, 39, 40, 40, 42, 42, 44, 45, 46, 46, 48, 49, 50, 51, 52, 52, 54, 55, 56, 57, 58, 58, 60, 60, 62, 63, 64, 65, 66, 66, 68, 69, 70, 70, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2010

Keywords

Examples

			From _Gus Wiseman_, Dec 04 2024: (Start)
The nonprime integers <= n:
  1  1  1  4  4  6  6  8  9  10  10  12  12  14  15  16
           1  1  4  4  6  8  9   9   10  10  12  14  15
                 1  1  4  6  8   8   9   9   10  12  14
                       1  4  6   6   8   8   9   10  12
                          1  4   4   6   6   8   9   10
                             1   1   4   4   6   8   9
                                     1   1   4   6   8
                                             1   4   6
                                                 1   4
                                                     1
(End)
		

Crossrefs

For prime we have A007917.
For nonprime we have A179278 (this).
For squarefree we have A070321.
For nonsquarefree we have A378033.
For prime power we have A031218.
For non prime power we have A378367.
For perfect power we have A081676.
For non perfect power we have A378363.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprimes, differences A065310.
A095195 has row n equal to the k-th differences of the prime numbers.
A113646 gives least nonprime >= n.
A151800 gives the least prime > n, weak version A007918.
A377033 has row n equal to the k-th differences of the composite numbers.

Programs

  • Mathematica
    Array[# - Boole[PrimeQ@ #] - Boole[# == 3] &, 72] (* Michael De Vlieger, Oct 13 2018 *)
    Table[Max@@Select[Range[n],!PrimeQ[#]&],{n,30}] (* Gus Wiseman, Dec 04 2024 *)
  • PARI
    a(n) = if (isprime(n), if (n==3, 1, n-1), n); \\ Michel Marcus, Oct 13 2018

Formula

For n > 3: a(n) = A113523(n) = A014684(n);
For n > 0: a(n) = A113638(n). - Georg Fischer, Oct 12 2018
A005171(a(n)) = 1; A010051(a(n)) = 0.
a(n) = A018252(A062298(n)). - Ridouane Oudra, Aug 22 2025

Extensions

Inequality in the name reversed by Gus Wiseman, Dec 05 2024

A341408 Number of partitions of n into 3 nonprime parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 2, 4, 5, 5, 5, 7, 6, 9, 8, 11, 10, 13, 12, 16, 14, 19, 16, 22, 19, 26, 22, 29, 27, 33, 28, 39, 33, 42, 38, 47, 43, 53, 45, 58, 52, 63, 59, 70, 61, 77, 68, 83, 76, 91, 79, 98, 88, 105, 95, 115, 102, 121, 111, 130, 119, 141, 124, 148
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i), t-1))))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=3..72);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i], t - 1]]]];
    a[n_] := b[n, n, 3];
    a /@ Range[3, 72] (* Jean-François Alcover, Mar 28 2021, after Alois P. Heinz *)

A341454 Number of partitions of n into 7 nonprime parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 9, 10, 12, 15, 17, 20, 24, 27, 32, 37, 43, 49, 58, 64, 76, 85, 99, 111, 129, 140, 166, 182, 210, 230, 267, 290, 336, 362, 418, 451, 519, 559, 640, 685, 784, 837, 956, 1020, 1158, 1232, 1397, 1483, 1677, 1776
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i), t-1))))
        end:
    a:= n-> b(n$2, 7):
    seq(a(n), n=7..67);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 7];
    Table[a[n], {n, 7, 67}] (* Jean-François Alcover, Feb 23 2022, after Alois P. Heinz *)

A341455 Number of partitions of n into 8 nonprime parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38, 43, 51, 59, 67, 77, 90, 101, 119, 133, 152, 172, 199, 220, 256, 283, 325, 359, 412, 453, 520, 569, 652, 711, 810, 882, 1005, 1091, 1238, 1341, 1519, 1641, 1854, 1999
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i), t-1))))
        end:
    a:= n-> b(n$2, 8):
    seq(a(n), n=8..67);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 8];
    Table[a[n], {n, 8, 67}] (* Jean-François Alcover, Feb 23 2022, after Alois P. Heinz *)

A341464 Number of partitions of n into 5 distinct nonprime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 5, 7, 7, 9, 12, 14, 15, 19, 21, 27, 29, 35, 38, 47, 49, 59, 65, 77, 82, 96, 102, 119, 128, 147, 157, 181, 189, 216, 231, 260, 276, 309, 327, 366, 387, 431, 454, 505, 529, 584, 617, 678, 713, 780, 818, 892, 938, 1020, 1071, 1164, 1213, 1311, 1378
Offset: 28

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(isprime(i), 0, b(n-i, min(n-i, i-1), t-1))))
        end:
    a:= n-> b(n$2, 5):
    seq(a(n), n=28..88);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i - 1], t - 1]]]];
    a[n_] := b[n, n, 5];
    Table[a[n], {n, 28, 88}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)

A341465 Number of partitions of n into 6 distinct nonprime parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 5, 8, 10, 13, 13, 18, 20, 26, 30, 36, 40, 49, 55, 65, 76, 88, 97, 114, 128, 146, 167, 187, 209, 237, 262, 294, 331, 366, 405, 449, 496, 547, 608, 663, 730, 798, 875, 953, 1050, 1136, 1239, 1342, 1463, 1577, 1723, 1849, 2008, 2159, 2334
Offset: 38

Views

Author

Ilya Gutkovskiy, Feb 12 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i b(n$2, 6):
    seq(a(n), n=38..95);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[PrimeQ[i], 0, b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 6];
    Table[a[n], {n, 38, 95}] (* Jean-François Alcover, Feb 23 2022, after Alois P. Heinz *)
Previous Showing 21-30 of 86 results. Next