cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
        1
        2       2
        5       3
       15       9       5
       52       7
      203      66      31      11
      877      15
     4140     712     109      22
    21147     686      30
   115975   10457     339      42
   678570      56
  4213597  198091   27036    6721    1043      77
For example, row 4 counts the following multiset partitions.
  {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
  {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
  {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
  {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
  {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
  {{2},{1,3,4}}      {{1},{1},{2,2}}
  {{3},{1,2,4}}      {{1},{2},{1,2}}
  {{4},{1,2,3}}      {{2},{2},{1,1}}
  {{1},{2},{3,4}}    {{1},{1},{2},{2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
  • PARI
    \\ needs T(n,k) from A219727.
    Row(n)={[T(d,n/d) | d<-divisors(n)]}
    { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020

Formula

T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
T(n,k) = A219727(d, n/d), where d = A027750(n, k). - Andrew Howroyd, Jan 11 2020

Extensions

Edited by Peter Munn, Mar 05 2025

A322787 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic multiset partitions of a multiset with d = A027750(n, k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 7, 5, 7, 7, 11, 23, 21, 11, 15, 15, 22, 79, 66, 22, 30, 162, 30, 42, 274, 192, 42, 56, 56, 77, 1003, 1636, 1338, 565, 77, 101, 101, 135, 3763, 1579, 135, 176, 19977, 10585, 176, 231, 14723, 43686, 4348, 231, 297, 297, 385, 59663, 298416, 82694, 11582, 385
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
   1
   2   2
   3   3
   5   7   5
   7   7
  11  23  21  11
  15  15
  22  79  66  22
  30 162  30
  42 274 192  42
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{1}{23456}         {1}{12233}         {1}{11222}         {1}{11111}
{12}{3456}         {11}{2233}         {11}{1222}         {11}{1111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{1}{2}{3456}       {12}{1233}         {112}{122}         {1}{1}{1111}
{1}{23}{456}       {123}{123}         {12}{1122}         {1}{11}{111}
{12}{34}{56}       {1}{1}{2233}       {1}{1}{1222}       {11}{11}{11}
{1}{2}{3}{456}     {1}{12}{233}       {1}{11}{222}       {1}{1}{1}{111}
{1}{2}{34}{56}     {11}{22}{33}       {11}{12}{22}       {1}{1}{11}{11}
{1}{2}{3}{4}{56}   {11}{23}{23}       {1}{12}{122}       {1}{1}{1}{1}{11}
{1}{2}{3}{4}{5}{6} {1}{2}{1233}       {1}{2}{1122}       {1}{1}{1}{1}{1}{1}
                   {12}{13}{23}       {12}{12}{12}
                   {1}{23}{123}       {2}{11}{122}
                   {2}{11}{233}       {1}{1}{1}{222}
                   {1}{1}{2}{233}     {1}{1}{12}{22}
                   {1}{1}{22}{33}     {1}{1}{2}{122}
                   {1}{1}{23}{23}     {1}{2}{11}{22}
                   {1}{2}{12}{33}     {1}{2}{12}{12}
                   {1}{2}{13}{23}     {1}{1}{1}{2}{22}
                   {1}{2}{3}{123}     {1}{1}{2}{2}{12}
                   {1}{1}{2}{2}{33}   {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{3}{23}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Programs

  • PARI
    \\ See A318951 for RowSumMats
    row(n)={my(d=divisors(n)); vector(#d, i, RowSumMats(n/d[i], n, d[i]))}
    { for(n=1, 15, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 02 2022
Name edited by Peter Munn, Mar 05 2025

A322789 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 4, 3, 2, 2, 4, 7, 6, 4, 2, 2, 4, 10, 8, 4, 3, 7, 3, 4, 12, 8, 4, 2, 2, 6, 32, 35, 31, 18, 6, 2, 2, 4, 21, 10, 4, 4, 47, 29, 4, 5, 49, 72, 19, 5, 2, 2, 6, 81, 170, 71, 24, 6, 2, 2, 6, 138, 478, 296, 32, 6, 4, 429, 76, 4, 4, 64, 14, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
  1
  2  2
  2  2
  3  4  3
  2  2
  4  7  6  4
  2  2
  4 10  8  4
  3  7  3
  4 12  8  4
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{12}{34}{56}       {123}{123}         {112}{122}         {11}{11}{11}
{1}{2}{3}{4}{5}{6} {11}{22}{33}       {11}{12}{22}       {1}{1}{1}{1}{1}{1}
                   {11}{23}{23}       {12}{12}{12}
                   {12}{13}{23}       {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 03 2022
Name edited by Peter Munn, Mar 05 2025

A319877 Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

Original entry on oeis.org

1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular multiset multisystems (meaning all vertex-degrees are 2).

Examples

			The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
    1: {}
    7: {{1,1}}
    9: {{1},{1}}
   14: {{},{1,1}}
   18: {{},{1},{1}}
   23: {{2,2}}
   25: {{2},{2}}
   28: {{},{},{1,1}}
   36: {{},{},{1},{1}}
   46: {{},{2,2}}
   50: {{},{2},{2}}
   56: {{},{},{},{1,1}}
   72: {{},{},{},{1},{1}}
   92: {{},{},{2,2}}
   97: {{3,3}}
  100: {{},{},{2},{2}}
  112: {{},{},{},{},{1,1}}
  121: {{3},{3}}
  144: {{},{},{},{},{1},{1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  183: {{1},{1,2,2}}
  184: {{},{},{},{2,2}}
  185: {{2},{1,1,2}}
  194: {{},{3,3}}
  195: {{1},{2},{1,2}}
  200: {{},{},{},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A322705 Number of k-uniform k-regular hypergraphs spanning n vertices, for some 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 472, 23342
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 2 hypergraphs:
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 5 hypergraphs:
  {{1},{2},{3},{4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The a(5) = 26 hypergraphs:
  {{1},{2},{3},{4},{5}}
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,3},{3,4},{4,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,4},{2,4},{2,5},{3,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
  {{1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,4},{1,4,5},{2,3,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,3,4},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}}
  {{1,2,3},{1,3,4},{1,4,5},{2,3,5},{2,4,5}}
  {{1,2,3},{1,3,5},{1,4,5},{2,3,4},{2,4,5}}
  {{1,2,4},{1,2,5},{1,3,4},{2,3,5},{3,4,5}}
  {{1,2,4},{1,2,5},{1,3,5},{2,3,4},{3,4,5}}
  {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4,5}}
  {{1,2,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,4,5}}
  {{1,2,5},{1,3,4},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]

A350911 Number of regular digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 56, 609, 39346, 8728237, 6126648298, 14487876826313
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Crossrefs

Row sums of A350910.

A381586 Number of simple graphs on n unlabeled vertices whose degree sequence is consecutive.

Original entry on oeis.org

1, 1, 2, 4, 9, 24, 98, 622, 7293, 162052, 6997100, 578605618, 90558592724, 26673271109299, 14758661765740616
Offset: 0

Views

Author

John P. McSorley, Feb 28 2025

Keywords

Comments

A graph has a consecutive degree sequence if its distinct degrees are consecutive integers. This includes all regular graphs.

Examples

			For n = 4 there are 11 non-isomorphic graphs G on 4 vertices. An example with consecutive degree sequence is 4K_1, with degree sequence 0000; and an example with non-consecutive degree sequence is K_1 U K_3 with degree sequence 0222. The only other G with non-consecutive degree sequence is K_{1,3} with degree sequence 1113. Thus a(4) = 9.
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford University Press (1999).

Crossrefs

Extensions

a(8)-a(14) from Andrew Howroyd, Feb 28 2025

A051427 Number of strictly Deza graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 6, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From the Erikson et al. paper: We consider the following generalization of strongly regular graphs. A graph G is a Deza graph if it is regular and the number of common neighbors of two distinct vertices takes on one of two values (not necessarily depending on the adjacency of the two vertices). - Jonathan Vos Post, Jul 06 2008

Crossrefs

Extensions

a(14)-a(15) from Sean A. Irvine, Sep 18 2021

A319878 Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

Original entry on oeis.org

1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular (all vertex-degrees are 2) multiset partitions (no empty parts).

Examples

			The sequence of multiset partitions whose MM-numbers belong to the sequence begins:
    1: {}
    7: {{1,1}}
    9: {{1},{1}}
   23: {{2,2}}
   25: {{2},{2}}
   97: {{3,3}}
  121: {{3},{3}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  183: {{1},{1,2,2}}
  185: {{2},{1,1,2}}
  195: {{1},{2},{1,2}}
  207: {{1},{1},{2,2}}
  225: {{1},{1},{2},{2}}
  227: {{4,4}}
  289: {{4},{4}}
  541: {{1,1,3,3}}
  661: {{5,5}}
  679: {{1,1},{3,3}}
  687: {{1},{1,3,3}}
  781: {{3},{1,1,3}}
  841: {{1,3},{1,3}}
  847: {{1,1},{3},{3}}
  873: {{1},{1},{3,3}}
  957: {{1},{3},{1,3}}
  961: {{5},{5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A322555 Number of labeled simple graphs on n vertices where all non-isolated vertices have the same degree.

Original entry on oeis.org

1, 1, 2, 5, 18, 69, 390, 2703, 59474, 1548349, 168926258, 12165065351, 7074423247562, 2294426405580191, 4218009215702391954, 3810376434461484994317, 35102248193591661086921250, 156873334244228518638713087133, 4144940994226400702145709978234154
Offset: 0

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

Such graphs may be said to have regular support.

Examples

			The a(4) = 18 edge sets:
  {}
  {{1,2}}
  {{1,3}}
  {{1,4}}
  {{2,3}}
  {{2,4}}
  {{3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],SameQ@@Length/@Split[Sort[Join@@#]]&]],{n,6}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n, k)*(A295193(k) - 1). - Andrew Howroyd, Dec 17 2018

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 17 2018
a(16)-a(18) from Andrew Howroyd, May 21 2020
Previous Showing 31-40 of 44 results. Next