A124806
Number of circular n-letter words over the alphabet {0,1,2,3,4} with adjacent letters differing by at most 2.
Original entry on oeis.org
1, 5, 19, 65, 247, 955, 3733, 14649, 57583, 226505, 891219, 3507047, 13801285, 54313277, 213745019, 841177105, 3310392415, 13027820227, 51270096661, 201769982673, 794052091767, 3124938240153, 12297982928987, 48397879544975
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x^2-10*x^3+3*x^4+4*x^5)/((1-x-x^2)*(1-4*x+x^3)) )); // G. C. Greubel, Aug 03 2023
-
LinearRecurrence[{5,-3,-5,1,1}, {1,5,19,65,247,955}, 60] (* G. C. Greubel, Aug 03 2023 *)
-
@CachedFunction
def a(n): # a = A124806
if (n<6): return (1,5,19,65,247,955)[n]
else: return 5*a(n-1)-3*a(n-2)-5*a(n-3)+a(n-4)+a(n-5)
[a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023
A270918
Largest coefficient of (1+x+...+x^n)^(2*n).
Original entry on oeis.org
1, 2, 19, 580, 38165, 4395456, 786588243, 202384723528, 70886845397481, 32458256583753952, 18832730699014127291, 13507852690353224821652, 11738630472138500287398379, 12155701820213424461220851360, 14790850878997102285050287114419
Offset: 0
-
Table[Max[CoefficientList[Expand[Sum[x^k, {k, 0, n}]^(2n)], x]], {n, 0, 20}]
-
a(n) = vecmax(Vec((sum(k=0,n,x^k))^(2*n))); \\ Michel Marcus, Apr 01 2016
A104314
Prime coefficient of x^(2*k) in (x^4 + x^3 + x^2 + x + 1)^k for k in A104313.
Original entry on oeis.org
5, 19, 1974442362935339179, 47705925773278538281, 234692178470218983001
Offset: 1
-
f=1; Do[f=Expand[f*(x^4+x^3+x^2+x+1)]; s=Coefficient[f, x, 2n]; If[PrimeQ[s], Print[{n, s}]], {n, 100}]
A104631
Coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n.
Original entry on oeis.org
0, 1, 4, 18, 80, 365, 1686, 7875, 37080, 175725, 837100, 4004770, 19227924, 92599533, 447118140, 2163837030, 10492874384, 50972030189, 248000853348, 1208335275170, 5894873067200, 28791371852145, 140768761906190
Offset: 0
G.f. = x + 4*x^2 + 18*x^3 + 80*x^4 + 365*x^5 + 1686*x^6 + 7875*x^7 + ... - _Michael Somos_, Aug 12 2018
Cf.
A035343 (triangle of pentanomial coefficients).
-
P:=PolynomialRing(Integers()); [n eq 0 select 0 else Coefficients((1+x+x^2+x^3+x^4)^n)[2*n+2]: n in [0..22]]; // Bruno Berselli, Nov 17 2011
-
f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1], {n, 30}]
-
x='x+O('x^30); concat([0], Vec(sqrt((5*x^2+2*x-1+(x+1)*sqrt(5*x^2-6*x+1))/(2*x*(1-x)*(5*x+4)*(5*x-1))))) \\ G. C. Greubel, Aug 12 2018
A124828
Number of base 7 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 7, 29, 103, 417, 1717, 7229, 30793, 132225, 570649, 2470769, 10719793, 46569777, 202477633, 880792193, 3832748833, 16681516545, 72613292353, 316105114817, 1376159456641, 5991281182977, 26084303730049
Offset: 0
A124843
Number of base 8 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 8, 34, 122, 502, 2098, 8980, 38928, 170382, 750722, 3323554, 14763438, 65736004, 293186252, 1309156946, 5850527002, 26160514526, 117022825786, 523619082772, 2343388805944, 10488943094022, 46952619517170
Offset: 0
A124851
Number of base 9 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 9, 39, 141, 587, 2479, 10731, 47063, 208547, 931047, 4180239, 18849103, 85269011, 386687375, 1756855951, 7993210831, 36405316227, 165940691695, 756832203759, 3453347063599, 15762537566627, 71964915505967
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..99
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (9, -21, -7, 50, -4, -30, 4, 4).
A124852
Number of base 10 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 10, 44, 160, 672, 2860, 12482, 55198, 246712, 1111372, 5037174, 22940158, 104870790, 480863770, 2210197754, 10178143810, 46942294232, 216761695840, 1001878336772, 4634206919128, 21448419453382, 99316222901062
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..99
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (11, -39, 39, 37, -65, 4, 16, -1, -1).
A124857
Number of base 11 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 11, 49, 179, 757, 3241, 14233, 63333, 284877, 1291697, 5894119, 27031653, 124481521, 575160311, 2664800299, 12374329729, 57568895517, 268238883291, 1251429223153, 5844466935453, 27318547433927, 127784523940077
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..99
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (11, -36, 12, 105, -77, -102, 66, 35, -15, -3, 1).
A124858
Number of base 12 circular n-digit numbers with adjacent digits differing by 2 or less.
Original entry on oeis.org
1, 12, 54, 198, 842, 3622, 15984, 71468, 323042, 1472022, 6751064, 31123148, 144092684, 669468708, 3119587196, 14572658668, 68216250402, 319893194558, 1502357897232, 7064711394284, 33257109397452, 156701323391972
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..99
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (12, -45, 30, 134, -160, -141, 170, 59, -60, -9, 6).
Comments