cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A124806 Number of circular n-letter words over the alphabet {0,1,2,3,4} with adjacent letters differing by at most 2.

Original entry on oeis.org

1, 5, 19, 65, 247, 955, 3733, 14649, 57583, 226505, 891219, 3507047, 13801285, 54313277, 213745019, 841177105, 3310392415, 13027820227, 51270096661, 201769982673, 794052091767, 3124938240153, 12297982928987, 48397879544975
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

Empirical: a(base, n) = a(base-1, n) + A005191(n+1) for base >= 2*floor(n/2) + 1 where base is the number of letters in the alphabet.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x^2-10*x^3+3*x^4+4*x^5)/((1-x-x^2)*(1-4*x+x^3)) )); // G. C. Greubel, Aug 03 2023
    
  • Mathematica
    LinearRecurrence[{5,-3,-5,1,1}, {1,5,19,65,247,955}, 60] (* G. C. Greubel, Aug 03 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A124806
        if (n<6): return (1,5,19,65,247,955)[n]
        else: return 5*a(n-1)-3*a(n-2)-5*a(n-3)+a(n-4)+a(n-5)
    [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023

Formula

From Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 3*x^2 - 10*x^3 + 3*x^4 + 4*x^5) / ((1 - x - x^2)*(1 - 4*x + x^3)).
a(n) = 5*a(n-1) - 3*a(n-2) - 5*a(n-3) + a(n-4) + a(n-5) for n>5. (End)
a(n) = -4*[n=0] + LucasL(n-1) + 3*A099503(n) - 8*A099503(n-1). - G. C. Greubel, Aug 03 2023

A270918 Largest coefficient of (1+x+...+x^n)^(2*n).

Original entry on oeis.org

1, 2, 19, 580, 38165, 4395456, 786588243, 202384723528, 70886845397481, 32458256583753952, 18832730699014127291, 13507852690353224821652, 11738630472138500287398379, 12155701820213424461220851360, 14790850878997102285050287114419
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Expand[Sum[x^k, {k, 0, n}]^(2n)], x]], {n, 0, 20}]
  • PARI
    a(n) = vecmax(Vec((sum(k=0,n,x^k))^(2*n))); \\ Michel Marcus, Apr 01 2016

Formula

a(n) ~ exp(2) * sqrt(3/Pi) * n^(2*n - 3/2).

Extensions

Typo in formula corrected by Vaclav Kotesovec, Dec 10 2021

A104314 Prime coefficient of x^(2*k) in (x^4 + x^3 + x^2 + x + 1)^k for k in A104313.

Original entry on oeis.org

5, 19, 1974442362935339179, 47705925773278538281, 234692178470218983001
Offset: 1

Views

Author

T. D. Noe, Mar 01 2005

Keywords

Comments

a(6) > A005191(195315), if it exists. See A104313 for more information. - Jinyuan Wang, Jul 26 2021

Crossrefs

Cf. A005191 (pentanomial coefficients), A104312 (nontrivial prime quadrinomial coefficients), A104313.

Programs

  • Mathematica
    f=1; Do[f=Expand[f*(x^4+x^3+x^2+x+1)]; s=Coefficient[f, x, 2n]; If[PrimeQ[s], Print[{n, s}]], {n, 100}]

A104631 Coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n.

Original entry on oeis.org

0, 1, 4, 18, 80, 365, 1686, 7875, 37080, 175725, 837100, 4004770, 19227924, 92599533, 447118140, 2163837030, 10492874384, 50972030189, 248000853348, 1208335275170, 5894873067200, 28791371852145, 140768761906190
Offset: 0

Views

Author

T. D. Noe, Mar 17 2005

Keywords

Comments

In the triangle of pentanomial coefficients, these numbers are in the column next to the central pentanomial coefficients, A005191. Note that for n>0, n divides a(n). This divisibility property is also true for the triangle of trinomial coefficients, A027907, but apparently for no other triangle of m-nomial coefficients. The quotient a(n)/n is in A104632.

Examples

			G.f. = x + 4*x^2 + 18*x^3 + 80*x^4 + 365*x^5 + 1686*x^6 + 7875*x^7 + ... - _Michael Somos_, Aug 12 2018
		

Crossrefs

Cf. A035343 (triangle of pentanomial coefficients).
Cf. A104632.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [n eq 0 select 0 else Coefficients((1+x+x^2+x^3+x^4)^n)[2*n+2]: n in [0..22]]; // Bruno Berselli, Nov 17 2011
    
  • Mathematica
    f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1], {n, 30}]
  • PARI
    x='x+O('x^30); concat([0], Vec(sqrt((5*x^2+2*x-1+(x+1)*sqrt(5*x^2-6*x+1))/(2*x*(1-x)*(5*x+4)*(5*x-1))))) \\ G. C. Greubel, Aug 12 2018

Formula

G.f.: sqrt((5*x^2+2*x-1+(x+1)*sqrt(5*x^2-6*x+1))/(2*x*(1-x)*(5*x+4)*(5*x-1))). - Mark van Hoeij, Nov 16 2011
From Vaclav Kotesovec, Oct 17 2012: (Start)
Recurrence: 2*(n-1)*(2*n+1)*a(n) = (19*n^2 - 19*n + 2)*a(n-1) + 5*(2*n^2 - 3*n - 1)*a(n-2) - 25*(n-2)*n*a(n-3).
a(n) ~ 5^n/(2*sqrt(Pi*n)). (End)
a(n) = n * A104632(n) for n>=0. - Michael Somos, Aug 12 2018

A124828 Number of base 7 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 7, 29, 103, 417, 1717, 7229, 30793, 132225, 570649, 2470769, 10719793, 46569777, 202477633, 880792193, 3832748833, 16681516545, 72613292353, 316105114817, 1376159456641, 5991281182977, 26084303730049
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence; also confirms conjectured g.f. from Colin Barker. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 7 of A285280.

Formula

G.f.: (1 - 10*x^2 - 20*x^3 + 42*x^4 + 16*x^5 - 20*x^6) / ((1 - x)*(1 - 2*x - 2*x^2)*(1 - 4*x - 2*x^2 + 2*x^3)). - Colin Barker, Jun 03 2017

A124843 Number of base 8 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 8, 34, 122, 502, 2098, 8980, 38928, 170382, 750722, 3323554, 14763438, 65736004, 293186252, 1309156946, 5850527002, 26160514526, 117022825786, 523619082772, 2343388805944, 10488943094022, 46952619517170
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence; also confirms conjectured g.f. from Colin Barker. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 8 of A285280.

Formula

G.f.: (1 - 15*x^2 - 20*x^3 + 87*x^4 + 16*x^5 - 60*x^6) / ((1 - 3*x - x^2 + 2*x^3)*(1 - 5*x + x^2 + 6*x^3)). - Colin Barker, Jun 03 2017

A124851 Number of base 9 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 9, 39, 141, 587, 2479, 10731, 47063, 208547, 931047, 4180239, 18849103, 85269011, 386687375, 1756855951, 7993210831, 36405316227, 165940691695, 756832203759, 3453347063599, 15762537566627, 71964915505967
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence; also confirms conjectured g.f. from Colin Barker. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 9 of A285280.

Formula

G.f.: (1 - 21*x^2 - 14*x^3 + 150*x^4 - 16*x^5 - 150*x^6 + 24*x^7 + 28*x^8) / ((1 + x)*(1 - 4*x + 2*x^2)*(1 - 6*x + 5*x^2 + 8*x^3 - 4*x^4 - 2*x^5)). - Colin Barker, Jun 02 2017

A124852 Number of base 10 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 10, 44, 160, 672, 2860, 12482, 55198, 246712, 1111372, 5037174, 22940158, 104870790, 480863770, 2210197754, 10178143810, 46942294232, 216761695840, 1001878336772, 4634206919128, 21448419453382, 99316222901062
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence; also confirms conjectured g.f. from Colin Barker. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 10 of A285280.

Formula

G.f.: (1 - x - 27*x^2 + 27*x^3 + 201*x^4 - 313*x^5 + 8*x^6 + 112*x^7 - 7*x^8 - 9*x^9) / ((1 - x)*(1 + x)*(1 - 4*x + x^2 + x^3)*(1 - 7*x + 11*x^2 - x^4)). - Colin Barker, Jun 01 2017

A124857 Number of base 11 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 11, 49, 179, 757, 3241, 14233, 63333, 284877, 1291697, 5894119, 27031653, 124481521, 575160311, 2664800299, 12374329729, 57568895517, 268238883291, 1251429223153, 5844466935453, 27318547433927, 127784523940077
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 11 of A285280.

A124858 Number of base 12 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 12, 54, 198, 842, 3622, 15984, 71468, 323042, 1472022, 6751064, 31123148, 144092684, 669468708, 3119587196, 14572658668, 68216250402, 319893194558, 1502357897232, 7064711394284, 33257109397452, 156701323391972
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A005191(n+1) for base>=2.int(n/2)+1.
See A285280 for confirmation of linear recurrence and code to produce sequence. - Ray Chandler, Aug 12 2023.

Crossrefs

Cf. Row 12 of A285280.
Previous Showing 11-20 of 43 results. Next