cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A039665 Sets of 4 consecutive numbers with equal number of divisors.

Original entry on oeis.org

242, 243, 244, 245, 3655, 3656, 3657, 3658, 4503, 4504, 4505, 4506, 5943, 5944, 5945, 5946, 6853, 6854, 6855, 6856, 7256, 7257, 7258, 7259, 8392, 8393, 8394, 8395, 9367, 9368, 9369, 9370, 10983, 10984, 10985, 10986, 11605, 11606, 11607, 11608
Offset: 1

Views

Author

Keywords

Comments

Taking the first entry in each set gives A006601.

References

  • D. Wells, Curious and interesting numbers, Penguin Books, p. 134

Crossrefs

Extensions

More terms from Patrick De Geest, Nov 15 1999

A169834 Numbers k such that d(k-1) = d(k) = d(k+1).

Original entry on oeis.org

34, 86, 94, 142, 202, 214, 218, 231, 243, 244, 302, 375, 394, 446, 604, 634, 664, 698, 903, 922, 1042, 1106, 1138, 1262, 1275, 1310, 1335, 1346, 1402, 1642, 1762, 1833, 1838, 1886, 1894, 1925, 1942, 1982, 2014, 2055, 2102, 2134, 2182, 2218, 2265, 2306, 2344, 2362
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169834 n = a169834_list !! (n-1)
    a169834_list = f a051950_list [0..] where
       f (0:0:ws) (x:y:zs) = y : f (0:ws) (y:zs)
       f (:v:ws) (:y:zs) = f (v:ws) (y:zs)
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Maple
    q:= n-> is(nops(map(numtheory[tau], {$n-1..n+1}))=1):
    select(q, [$1..3000])[];  # Alois P. Heinz, Jun 24 2021
  • Mathematica
    d[n_] := DivisorSigma[0, n];
    samedQ[n_] := d[n-1] == d[n] == d[n+1];
    Select[Range[3000], samedQ] (* Jean-François Alcover, Aug 01 2018 *)
    1 + Flatten@Position[Differences@#&/@Partition[DivisorSigma[0, Range@3000], 3, 1], {0, 0}] (* Hans Rudolf Widmer, Feb 02 2023 *)
  • Python
    from sympy import divisor_count as d
    def ok(n): return d(n-1) == d(n) == d(n+1)
    print(list(filter(ok, range(1, 2400)))) # Michael S. Branicky, Jun 24 2021

Formula

a(n) = A005238(n) + 1. - Jon Maiga / Georg Fischer, Jun 24 2021

A049053 Numbers k such that k through k+6 all have the same number of divisors.

Original entry on oeis.org

171893, 180965, 647381, 1039493, 1071829, 1450261, 1563653, 1713413, 2129029, 2384101, 4704581, 4773301, 5440853, 5775365, 6627061, 6644405, 6697253, 8556661, 8833429, 10531253, 12101509, 12238453, 12307141, 13416661, 13970405
Offset: 1

Views

Author

Keywords

Comments

Allan Swett found that the first term not congruent to 5 mod 16 is 67073285. - Ralf Stephan, Nov 15 2004
Since A119479(n) < 7 for n < 8, no term has fewer than 8 divisors; the first that has more is a(30)=17476613. - Ivan Neretin, Feb 05 2016

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049051 (runs of 5), A049052 (runs of 6).

Programs

  • PARI
    isok(n) = {my(nb = numdiv(n)); for (k=1, 6, if (numdiv(n+k) != nb, return (0));); 1;} \\ Michel Marcus, Feb 06 2016

A049052 Numbers k such that k through k+5 all have the same number of divisors.

Original entry on oeis.org

28374, 90181, 157493, 171893, 171894, 180965, 180966, 210133, 298694, 346502, 369061, 376742, 610310, 647381, 647382, 707286, 729542, 769862, 1039493, 1039494, 1071829, 1071830, 1243541, 1302005, 1449605, 1450261, 1450262
Offset: 1

Views

Author

Keywords

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049051 (runs of 5), A049053 (runs of 7).

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[1451000]],{x_,x_,x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 03 2020 *)

A075032 Numbers n such that tau(n) <= tau(n+1) <= tau(n+2) where tau(n) = number of divisors of n.

Original entry on oeis.org

1, 2, 13, 14, 25, 26, 33, 34, 37, 38, 43, 61, 62, 73, 74, 85, 86, 93, 94, 97, 98, 103, 115, 118, 121, 122, 133, 134, 141, 142, 145, 146, 157, 158, 163, 187, 188, 193, 194, 201, 202, 205, 206, 213, 214, 217, 218, 229, 230, 241, 242, 243, 244, 253, 254, 274, 277
Offset: 1

Views

Author

Amarnath Murthy, Sep 02 2002

Keywords

Crossrefs

Cf. A000005, A075033, A075034, A075035, A005238 (subsequence).

Programs

  • Python
    from sympy import divisor_count as tau
    [n for n in range(1,303) if tau(n) <= tau(n+1) <= tau(n+2)] # Karl V. Keller, Jr., Jul 10 2020

Extensions

Corrected and extended by Benoit Cloitre, Sep 07 2002

A292580 T(n,k) is the start of the first run of exactly k consecutive integers having exactly 2n divisors. Table read by rows.

Original entry on oeis.org

5, 2, 6, 14, 33, 12, 44, 603, 242, 10093613546512321, 24, 104, 230, 3655, 11605, 28374, 171893, 48, 2511, 7939375, 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 19 2017

Keywords

Comments

The number of terms in row n is A119479(2n).
Düntsch and Eggleton (1989) has typos for T(3,5) and T(10,3) (called D(6,5) and D(20,3) in their notation). Letsko (2015) and Letsko (2017) both have a wrong value for T(7,3).
The first value required to extend the data is T(6,13) <= 586683019466361719763403545; the first unknown value that may exist is T(12,19). See the a-file for other known values and upper bounds up to T(50,7).

Examples

			T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p-1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
   n  T(n,1), T(n,2), ...
  ==  ========================================================
   1  5, 2;
   2  6, 14, 33;
   3  12, 44, 603, 242, 10093613546512321;
   4  24, 104, 230, 3655, 11605, 28374, 171893;
   5  48, 2511, 7939375;
   6  60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
   7  192, 29888, 76571890623;
   8  120, 2295, 8294, 153543, 178086, 5852870, 17476613;
   9  180, 6075, 959075, 66251139635486389922, T(9,5);
  10  240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
  11  3072, 2200933376, 104228508212890623;
  12  360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
  13  12288, 689278976, 1489106237081787109375;
  14  960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
  15  720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
  16  840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
  ...
		

Crossrefs

Formula

T(n,2) = A075036(n). - Jon E. Schoenfield, Sep 23 2017

Extensions

a(1)-a(25) from Düntsch and Eggleton (1989) with corrections by Jon E. Schoenfield, Sep 19 2017
a(26)-a(27) from Giovanni Resta, Sep 20 2017
a(28)-a(29) from Hugo van der Sanden, Jan 12 2022
a(30) from Hugo van der Sanden, Sep 03 2022
a(31) added by Hugo van der Sanden, Dec 05 2022; see "calculation of T(6,11)" link for a list of the people involved.
a(32) added by Hugo van der Sanden, Dec 18 2022; see "calculation of T(6,12)" link for a list of the people involved.

A332313 Numbers k such that k, k + 1 and k + 2 have the same number of divisors in Gaussian integers.

Original entry on oeis.org

23824, 38574, 52974, 62224, 71406, 105424, 110574, 191824, 201616, 209424, 240174, 249775, 282896, 285102, 297774, 326574, 340974, 375824, 393424, 407824, 440656, 451024, 496174, 509776, 553774, 587536, 599632, 600174, 606032, 623824, 628974, 631376, 667024, 672174
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Examples

			23824 is a term since 23824, 23825 and 23826 each have 36 divisors in Gaussian integers.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[DivisorSigma[0, Range[3*10^5], GaussianIntegers -> True], 3, 1], {x_, x_, x_}]] (* after Harvey P. Dale at A005238 *)

A338453 Starts of runs of 3 consecutive numbers with the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 242, 243, 1837, 2361, 3693, 3728, 6061, 6457, 9782, 11181, 11721, 13855, 15177, 20017, 22591, 28021, 31461, 31887, 33098, 33993, 38137, 52016, 52112, 60321, 76897, 78542, 78745, 80461, 108394, 116017, 119541, 124453, 125493, 127117, 127417, 145369, 151805, 154113
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1) = A093653(k+2).

Examples

			3 is a term since A093653(3) = A093653(4) = A093653(5) = 3.
		

Crossrefs

Cf. A093653.
Subsequence of A338452.
Similar sequences: A005238, A006073, A045939.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 155000}]; s
    SequencePosition[Table[Total[DigitCount[Divisors[n],2,1]],{n,160000}],{x_,x_,x_}][[All,1]] (* Harvey P. Dale, Feb 04 2023 *)

A332387 Numbers k such that k, k + 1 and k + 2 have the same number of divisors in Eisenstein integers.

Original entry on oeis.org

13448, 27848, 75774, 135400, 243338, 276123, 396950, 452823, 497575, 524823, 565674, 587575, 632224, 639848, 719223, 769316, 861123, 935799, 1060904, 1073875, 1153023, 1204312, 1308856, 1366624, 1413498, 1490599, 1555975, 1565223, 1601798, 1767424, 1902774, 1923295
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2020

Keywords

Examples

			13448 is a term since 13448, 13449 and 13450 each have 12 divisors in Eisenstein integers.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; Flatten[Position[Partition[ eisNumDiv /@ Range[10^6], 3, 1], {x_, x_, x_}]] (* after Harvey P. Dale at A005238 *)

A113467 Least k such that k, k+n and k+2n have the same number of divisors.

Original entry on oeis.org

33, 3, 119, 3, 77, 5, 8, 3, 77, 3, 35, 5, 8, 3, 187, 6, 21, 5, 8, 3, 145, 33, 39, 5, 8, 39, 8, 3, 33, 7, 15, 12, 189, 3, 28, 7, 21, 3, 55, 3, 33, 5, 8, 66, 209, 69, 35, 5, 8, 3, 115, 39, 141, 5, 51, 6, 8, 27, 15, 7, 21, 66, 95, 3, 40, 5, 27, 3, 8, 15, 35, 7, 69, 55, 287, 6, 65, 11, 8, 3, 24
Offset: 1

Views

Author

David Wasserman, Jan 08 2006

Keywords

Comments

Third row of A113465.

Examples

			a(7) = 8 because 8, 15 and 22 each have 4 divisors.
		

Crossrefs

Programs

  • Mathematica
    snd[n_]:=Module[{k=1},While[Length[Union[DivisorSigma[0,{k,k+n,k+2n}]]]>1, k++];k]; Array[snd,90] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    a(n) = {k  = 1; until ((numdiv(k) == numdiv(k+n)) && (numdiv(k) == numdiv(k+2*n)), k++); return (k);} \\ Michel Marcus, Jun 16 2013
Previous Showing 11-20 of 27 results. Next