cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A098574 a(n) = Sum_{k=0..floor(n/7)} C(n-5*k,2*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 51, 71, 102, 149, 218, 316, 452, 639, 897, 1257, 1766, 2493, 3536, 5031, 7165, 10196, 14484, 20538, 29085, 41168, 58282, 82561, 117036, 165995, 235492, 334074, 473824, 671856, 952449, 1350078, 1913702
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-2*x+x^2-x^7))) // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+x^2-x^7), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-5*k, 2*k)); \\ Michel Marcus, Sep 06 2017
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x+x^2-x^7)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/(1-2*x+x^2-x^7).

A106511 Expansion of g.f. (1+x)^2/((1 + x + x^2)*(1 + x - x^2)).

Original entry on oeis.org

1, 0, 0, 0, 1, -2, 3, -4, 6, -10, 17, -28, 45, -72, 116, -188, 305, -494, 799, -1292, 2090, -3382, 5473, -8856, 14329, -23184, 37512, -60696, 98209, -158906, 257115, -416020, 673134, -1089154, 1762289, -2851444, 4613733, -7465176, 12078908, -19544084, 31622993
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Diagonal sums of the Riordan array ((1+x)/(1+x+x^2), x/(1+x)), A106509.

Crossrefs

Programs

  • Magma
    I:=[1,0,0,0]; [n le 4 select I[n] else -2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 12 2014
    
  • Mathematica
    CoefficientList[Series[(1 + x)^2/((1 + x + x^2)(1 + x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jan 12 2014 *)
  • PARI
    a(n) = (fibonacci(1-n) + 1 - n%3) >> 1; \\ Kevin Ryde, Apr 29 2021
  • Sage
    def A005252(n): return sum( binomial(n-2*k, 2*k) for k in (0..n//4) )
    def A106511(n): return (-1)^n*( fibonacci(n-1) - A005252(n-2) )
    [A106511(n) for n in (0..45)] # G. C. Greubel, Apr 29 2021
    

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2k} (-1)^j*binomial(2n-3k-j, j).
a(n) = (1/2)*((-1)^n*Fibonacci(n) + Kronecker(-3,n)). - Ralf Stephan, Jun 02 2007
a(n) = -2*a(n-1) - a(n-2) + a(n-4), a(0)=1, a(1)=a(2)=a(3)=0. - Philippe Deléham, Jan 12 2014
a(n) = (-1)^n*(Fibonacci(n-1) - A005252(n-2)), n>=2. - Katharine Ahrens, May 05 2019
E.g.f.: exp(-x/2)*(15*cos(sqrt(3)*x/2) + 15*cosh(sqrt(5)*x/2) + 5*sqrt(3)*sin(sqrt(3)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Oct 19 2023

A348290 a(n) = Sum_{k=0..floor(n/10)} binomial(n-5*k,5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 463, 793, 1288, 2003, 3005, 4380, 6255, 8855, 12630, 18508, 28358, 45783, 77408, 134883, 237888, 418513, 727513, 1243163, 2083888, 3426771, 5535911, 8808206, 13850761, 21615771, 33638409, 52455339, 82332229, 130506914, 209273284
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\10, binomial(n-5*k, 5*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^4/((1-x)^5-x^10))

Formula

G.f.: (1-x)^4/((1-x)^5 - x^10).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10).

A373906 a(n) = Sum_{k=0..floor(n/4)} binomial(n+2*k,n-4*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 29, 85, 212, 476, 1016, 2172, 4825, 11213, 26763, 64095, 151851, 354737, 820328, 1889968, 4361521, 10106859, 23509678, 54793282, 127709888, 297336790, 691382201, 1606284377, 3731020629, 8668253125, 20146856893, 46840732201, 108918637566, 253262275888
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+2*k, n-4*k));

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 14*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x^4/(1 - x)^5).

A174618 For n odd a(n) = a(n-2) + a(n-3), for n even a(n) = a(n-2) + a(n-5); with a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 10, 11, 17, 17, 28, 27, 45, 44, 72, 72, 116, 117, 188, 189, 305, 305, 494, 493, 799, 798, 1292, 1292, 2090, 2091, 3382, 3383, 5473, 5473, 8856, 8855, 14329, 14328, 23184, 23184, 37512, 37513, 60696
Offset: 1

Views

Author

Mark Dols, Mar 23 2010

Keywords

Comments

Combination a(2n)=A005252(n-1) and a(2n+1)=A024490(n). Consecutive pairs add up to A000045 and subtract to A010892. If a(1)= 1 formula gives: A103609.

Examples

			As consecutive pairs: (0,1),(0,1),(1,1),(2,1),(3,2),(4,4),...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70);
    [0] cat Coefficients(R!( x^2*(1-x^2+x^3)/((1-x^2+x^4)*(1-x^2-x^4)) )); // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    nxt[{n_,a_,b_,c_,d_,e_}]:={n+1,b,c,d,e,If[EvenQ[n],d+c,d+a]}; NestList[nxt,{5,0,1,0,1,1},50][[All,2]] (* or *) LinearRecurrence[ {0,2,0,-1,0,0,0,1},{0,1,0,1,1,1,2,1},60] (* Harvey P. Dale, Nov 15 2019 *)
  • SageMath
    def A174618(n): return (kronecker(12,n-3) - kronecker(12,n-2) + ((n+1)%2)*fibonacci(n//2) + (n%2)*fibonacci((n+1)//2))//2
    [A174618(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

G.f.: x^2*(1-x^2+x^3) / ( (1-x^2+x^4)*(1-x^2-x^4) ). - R. J. Mathar, Jan 27 2011
a(n) = (1/2)*(A110161(n-3) - A110161(n-2) + A079977(n-2) + A079977(n-1)). - G. C. Greubel, Oct 23 2024

A217839 T(n,k)=Number of n element 0..1 arrays with each element the minimum of k adjacent elements of a random 0..1 array of n+k-1 elements.

Original entry on oeis.org

2, 2, 4, 2, 4, 8, 2, 4, 7, 16, 2, 4, 7, 12, 32, 2, 4, 7, 11, 21, 64, 2, 4, 7, 11, 17, 37, 128, 2, 4, 7, 11, 16, 27, 65, 256, 2, 4, 7, 11, 16, 23, 44, 114, 512, 2, 4, 7, 11, 16, 22, 34, 72, 200, 1024, 2, 4, 7, 11, 16, 22, 30, 52, 117, 351, 2048, 2, 4, 7, 11, 16, 22, 29, 42, 81, 189, 616
Offset: 1

Views

Author

R. H. Hardin Oct 12 2012

Keywords

Comments

Table starts
.....2....2....2....2...2...2...2...2...2...2...2...2...2...2
.....4....4....4....4...4...4...4...4...4...4...4...4...4...4
.....8....7....7....7...7...7...7...7...7...7...7...7...7...7
....16...12...11...11..11..11..11..11..11..11..11..11..11..11
....32...21...17...16..16..16..16..16..16..16..16..16..16..16
....64...37...27...23..22..22..22..22..22..22..22..22..22..22
...128...65...44...34..30..29..29..29..29..29..29..29..29..29
...256..114...72...52..42..38..37..37..37..37..37..37..37..37
...512..200..117...81..61..51..47..46..46..46..46..46..46..46
..1024..351..189..126..91..71..61..57..56..56..56..56..56..56
..2048..616..305..194.137.102..82..72..68..67..67..67..67..67
..4096.1081..493..296.205.149.114..94..84..80..79..79..79..79
..8192.1897..798..450.303.218.162.127.107..97..93..92..92..92
.16384.3329.1292..685.443.316.232.176.141.121.111.107.106.106
.32768.5842.2091.1046.644.452.331.247.191.156.136.126.122.121

Examples

			Some solutions for n=8 k=4
..0....0....1....0....1....0....1....1....0....1....0....0....0....0....0....0
..1....1....1....1....0....0....1....1....1....0....0....1....0....1....0....0
..1....1....1....1....0....1....0....1....1....0....1....0....1....0....0....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....1
..1....1....0....0....0....0....0....0....0....1....1....0....1....0....1....0
..1....0....0....0....0....0....0....0....0....1....1....0....0....1....1....0
..0....0....1....0....1....0....1....0....1....1....1....1....0....1....0....0
		

Crossrefs

Column 2 is A005251(n+3)
Column 3 is A005252(n+3)
Column 4 is A005253(n+3)
Column 5 is A005689(n+6)
Column 6 is A098574(n+6)
Diagonal is A000124

Formula

Empirical for columns 1-7: a(n) = 2*a(n-1) -a(n-2) +a(n-k-1)

A110317 Triangle read by rows: T(n,k) (k>=0) is the number of RNA secondary structures of size n (i.e., with n nodes) having k arcs that are covered by other arcs.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 1, 12, 5, 21, 15, 1, 37, 37, 8, 65, 84, 35, 1, 114, 182, 115, 12, 200, 381, 323, 73, 1, 351, 777, 825, 313, 17, 616, 1554, 1977, 1087, 138, 1, 1081, 3062, 4524, 3291, 754, 23, 1897, 5962, 9999, 9063, 3209, 241, 1, 3329, 11496, 21515, 23300
Offset: 0

Views

Author

Emeric Deutsch, Jul 19 2005

Keywords

Comments

Rows 0,1,2 have one term each; row n >= 3 has ceiling(n/2) - 1 terms.
Rows sums yield A004148.
T(n,0) = A005251(n+1).
Sum_{k>=0} k*T(n,k) = A110318(n-5).

Examples

			T(6,1)=5 because we have 15/(24)/3/6, 16/(24)/3/5, 16/(25)/3/4, 16/2/(35)/4 and 1/26/(35)/4 (the covered arcs are shown between parentheses).
Triangle begins
   1;
   1;
   1;
   2;
   4;
   7,  1;
  12,  5;
  21, 15,  1;
  37, 37,  8;
		

Crossrefs

Programs

  • Maple
    G:=2*t/(2*t-2*z*t-1+z+t*z^2+sqrt(1-2*z-2*t*z^2+z^2-2*t*z^3+t^2*z^4)): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 2 do print(1) od: for n from 3 to 17 do seq(coeff(t*P[n],t^k),k=1..ceil(n/2)-1) od; # yields sequence in triangular form

Formula

G.f.: 2t/(2t - 2tz - 1 + z + tz^2 + sqrt(1 - 2z - 2tz^2 + z^2 - 2tz^3 + t^2*z^4)).

A259964 A specially constructed B_2 sequence with sum of reciprocals greater than that of the Mian-Chowla sequence A005282.

Original entry on oeis.org

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 229, 257, 290, 312, 381, 419, 467, 507, 621, 721, 770, 864, 927, 1050, 1178, 1289, 1457, 1561, 1615, 1774, 1907, 2090, 2164, 2263, 2309, 2539, 2800, 2938, 3035, 3310, 3380, 3738, 4043, 4239, 4439, 4726, 4851, 5016, 5169, 5289, 5490, 5760, 6646, 6843, 7015, 7442, 7674, 7986, 8284, 8506, 8772, 9240, 9778, 9996, 10344, 10431, 11614, 12263
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Comments

Constructed using the greedy algorithm (as for A005252) except at 15th term, which is 229.
It had been conjectured that the sum of reciprocals for B_2 sequences was maximized by A005282. This sequence gives a counterexample.

Crossrefs

Cf. A005282.
Previous Showing 11-18 of 18 results.