cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A057207 a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 13, 8693, 1997, 6029, 61, 3181837, 113, 181, 1934689, 6143090225314378441493352126119201470973493456817556328833988172277, 4733, 3617, 41, 68141, 37, 51473, 17, 821, 598201519454797, 157, 9689, 2357, 757, 149, 293, 5261
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - Daran Gill, Mar 23 2013

Examples

			a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* T. D. Noe, Mar 27 2013 *)

Extensions

Eight more terms, a(9)-a(16), from Max Alekseyev, Apr 27 2009
Seventeen more terms, a(17)-a(33), added by Daran Gill, Mar 23 2013

A084598 a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is smallest prime factor of (Product_{k = 1..n} a(k)) - 1.

Original entry on oeis.org

2, 3, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107
Offset: 1

Views

Author

Marc LeBrun, May 31 2003

Keywords

Comments

Like the Euclid-Mullin sequence A000945, but subtracting rather than adding 1 to the product.
The first 4 terms are identical with A084599. It starts diverging at a(5) because the factorization of 2*3*5*29 - 1 = 869 = 11*79 gives A084598(5)=11 and A084599(5)=79. - Hugo Pfoertner, Mar 31 2004

Examples

			a(4) = 29 since 2*3*5 = 30 and 29 is the smallest prime factor of 30-1.
		

Crossrefs

Essentially the same as A005265.

Programs

  • Mathematica
    a={2,3}; q=2;
    For[n=3,n<=19,n++,
        q=q*Last[a];
        AppendTo[a,Min[FactorInteger[q-1][[All,1]]]];
        ];
    a (* Robert Price, Jul 17 2015 *)

Extensions

More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM

A051312 Euclid-Mullin sequence (A000945) with initial value a(1)=19 instead of a(1)=2.

Original entry on oeis.org

19, 2, 3, 5, 571, 271, 457, 397, 1123, 23, 103, 42572757267735264511, 313, 17, 16013177, 7951, 1259, 41, 1531, 11, 83, 53, 67, 7, 21397, 13, 1619, 1274209367143, 433, 37, 491, 29, 658837, 135202080527, 163, 587, 31, 2797, 35286479
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=19; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=19; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 31 2015

A084599 a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is largest prime factor of (Product_{k=1..n} a(k)) - 1.

Original entry on oeis.org

2, 3, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941
Offset: 1

Views

Author

Marc LeBrun, May 31 2003

Keywords

Comments

Like the Euclid-Mullin sequence A000946, but subtracting rather than adding 1 to the product.

Examples

			a(4)=29 since 2*3*5=30 and 29 is the largest prime factor of 30-1
a(5)=79 since 2*3*5*29=870 and 79 is the largest prime factor of 870-1=869=11*79.
		

Crossrefs

Essentially the same as A005266.

Extensions

More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM.
The next term a(15) is not known. It requires the factorization of the 245-digit composite number which remains after eliminating 7 smaller factors.

A258581 a(1) = 2; for n > 1 if n is even a(n) = gpf(1 + Product_{odd m,m

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 23, 37, 17, 149, 761, 50647, 4799, 411527, 18871308021859, 10312625105789, 17838863896549, 57892815889963361050999657943, 2252973546284243766517, 1849093263449444009859625443689931115519009693
Offset: 1

Views

Author

Anders Hellström, Jul 15 2015

Keywords

Crossrefs

Programs

  • PARI
    gpf(n)=my(v=factor(n)[, 1]); v[#v];
    main(size)=my(v=vector(size), i, odd=2, even=1); v[1]=2; for(i=2, size, if(i%2==0, v[i]=gpf(odd+1); even*=v[i], v[i]=gpf(even+1); odd*=v[i])); v;

A051324 Euclid-Mullin sequence (A000945) with initial value a(1)=71 instead of a(1)=2.

Original entry on oeis.org

71, 2, 11, 3, 43, 201499, 67, 5, 487, 19, 967, 13, 131, 17, 3523392679146994953040171, 7, 633046028131441, 197, 1313225762816449, 22441, 29, 7039, 2357, 12264112894355231632110401532068053014661
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=71; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1, 1]); f
    first(m)=my(v=vector(m)); v[1]=71; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Dec 04 2015

Extensions

a(24) from Robert Price, Jul 11 2015

A051330 Euclid-Mullin sequence (A000945) with initial value a(1)=97 instead of a(1)=2.

Original entry on oeis.org

97, 2, 3, 11, 19, 7, 461, 719, 5, 1411130344471, 139, 43, 36599, 1097, 17, 104370954301, 23, 13, 59, 41, 83, 196777201807603861, 569, 31, 149, 131, 7408846366410141253195388029, 29, 27017, 192228034594584553, 307, 2677, 73, 263, 389, 10463, 61, 47, 617, 743
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=97; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    lpf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=97; for(i=2, m, v[i]=lpf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 31 2015

Extensions

a(34)-a(45) from Robert Price, Jul 20 2015

A057206 Primes of the form 6k+5 generated recursively: a(1)=5; a(n) = min{p, prime; p mod 6 = 5; p | 6Q-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 11, 1367, 13082189, 89, 59, 29819952677, 91736008068017, 17, 887050405736870123700827, 688273423680369013308306870159348033807942418302818522537, 74367405177105011, 12731422703, 1812053
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

There are infinitely many primes of the form 6k + 5, and this sequence figures in the classic proof of that fact. - Alonso del Arte, Mar 02 2017

Examples

			a(3) = 11 is the smallest prime divisor of the form 6k + 5 of 6 * (5 * 29) - 1 = 6Q - 1 = 11 * 79 = 869.
		

References

  • Dirichlet, P. G. L. (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    primes5mod6 = {5}; q = 1;For[n = 2, n <= 10, n++, q = q * Last[ primes5mod6]; AppendTo[primes5mod6, Min[Select[FactorInteger[6 * q - 1][[All, 1]], Mod[#, 6] == 5 &]]];]; primes5mod6 (* Robert Price, Jul 18 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%6==5&&(6*q-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* Anders Hellström, Jul 18 2015 */

Extensions

a(13)-a(17) from Robert Price, Jul 18 2015

A217759 Primes of the form 4k+3 generated recursively: a(1)=3, a(n)= Min{p; p is prime; Mod[p,4]=3; p|4Q^2-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

3, 7, 43, 19, 6863, 883, 23, 191, 2927, 205677423255820459, 11, 163, 227, 9127, 59, 31, 71, 131627, 2101324929412613521964366263134760336303, 127, 1302443, 4065403, 107, 2591, 21487, 223, 12823, 167, 53720906651, 5452254637117019, 39827899, 11719, 131
Offset: 1

Views

Author

Daran Gill, Mar 23 2013

Keywords

Comments

Contrast A057207, where all the factors are congruent to 1 (mod 4), here only one is guaranteed to be congruent to 3 (mod 4).

Examples

			a(10) is 205677423255820459 because it is the only prime factor congruent to 3 (mod 4) of 4*(3*7*43*19*6863*883*23*191*2927)^2-1 = 5*13*2088217*256085119729*205677423255820459. The four smaller factors are all congruent to 1 (mod 4).
		

References

  • Dirichlet,P.G.L (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 13.

Crossrefs

A240803 a(n) = 2 + product of first n odd primes.

Original entry on oeis.org

5, 17, 107, 1157, 15017, 255257, 4849847, 111546437, 3234846617, 100280245067, 3710369067407, 152125131763607, 6541380665835017, 307444891294245707, 16294579238595022367, 961380175077106319537, 58644190679703485491637, 3929160775540133527939547, 278970415063349480483707697
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [2+&*[NthPrime(i+1): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Product[Prime[k + 1], {k, 1, n}] + 2, {n, 1, 30}] (* Vincenzo Librandi, Apr 15 2014 *)
Previous Showing 11-20 of 43 results. Next