A075432
Primes with no squarefree neighbors.
Original entry on oeis.org
17, 19, 53, 89, 97, 127, 149, 151, 163, 197, 199, 233, 241, 251, 269, 271, 293, 307, 337, 349, 379, 449, 487, 491, 521, 523, 557, 577, 593, 631, 701, 727, 739, 751, 773, 809, 811, 881, 883, 919, 953, 991, 1013, 1049, 1051, 1061, 1063, 1097, 1151, 1171, 1249
Offset: 1
p = 17 is a term because 16 = 4^2 and 18=2*3^2 are divisible by squares > 1. - _N. J. A. Sloane_, Jul 19 2024
-
a075432 n = a075432_list !! (n-1)
a075432_list = f [2, 4 ..] where
f (u:vs@(v:ws)) | a008966 v == 1 = f ws
| a008966 u == 1 = f vs
| a010051' (u + 1) == 0 = f vs
| otherwise = (u + 1) : f vs
-- Reinhard Zumkeller, May 04 2013
-
filter:= n -> isprime(n) and not numtheory:-issqrfree(n+1) and not numtheory:-issqrfree(n-1):
select(filter, [seq(2*i+1, i=1..1000)]); # Robert Israel, Aug 27 2014
-
lst={}; Do[p=Prime[n]; If[ !SquareFreeQ[Floor[p-1]] && !SquareFreeQ[Floor[p+1]], AppendTo[lst,p]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 20 2008 *)
Select[Prime[Range[300]],!SquareFreeQ[#-1]&&!SquareFreeQ[#+1]&] (* Harvey P. Dale, Apr 24 2014 *)
-
is(n)=!issquarefree(if(n%4==1, n+1, n-1)) && isprime(n) \\ Charles R Greathouse IV, Aug 27 2014
A088144
Sum of primitive roots of n-th prime.
Original entry on oeis.org
1, 2, 5, 8, 23, 26, 68, 57, 139, 174, 123, 222, 328, 257, 612, 636, 886, 488, 669, 1064, 876, 1105, 1744, 1780, 1552, 2020, 1853, 2890, 1962, 2712, 2413, 3536, 4384, 3335, 5364, 3322, 3768, 4564, 7683, 7266, 8235, 4344, 8021, 6176, 8274
Offset: 1
For 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, the primitive roots are as follows: {{1}, {2}, {2, 3}, {3, 5}, {2, 6, 7, 8}, {2, 6, 7, 11}, {3, 5, 6, 7, 10, 11, 12, 14}, {2, 3, 10, 13, 14, 15}, {5, 7, 10, 11, 14, 15, 17, 19, 20, 21}, {2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27}}
- C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.
-
PrimitiveRootQ[ a_Integer, p_Integer ] := Block[ {fac, res}, fac = FactorInteger[ p - 1 ]; res = Table[ PowerMod[ a, (p - 1)/fac[ [ i, 1 ] ], p ], {i, Length[ fac ]} ]; ! MemberQ[ res, 1 ] ] PrimitiveRoots[ p_Integer ] := Select[ Range[ p - 1 ], PrimitiveRootQ[ #, p ] & ]
Total /@ Table[PrimitiveRootList[Prime[k]], {k, 1, 45}] (* Updated for Mathematica 13 by Harlan J. Brothers, Feb 27 2023 *)
-
a(n)=local(r, p, pr, j); p=prime(n); r=vector(eulerphi(p-1)); pr=znprimroot(p); for(i=1, p-1, if(gcd(i, p-1)==1, r[j++]=lift(pr^i))); vecsum(r) \\ after Franklin T. Adams-Watters's code in A060749, Michel Marcus, Mar 16 2015
A019335
Primes with primitive root 5.
Original entry on oeis.org
2, 3, 7, 17, 23, 37, 43, 47, 53, 73, 83, 97, 103, 107, 113, 137, 157, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 317, 347, 353, 373, 383, 397, 433, 443, 463, 467, 503, 523, 547, 557, 563, 577, 587, 593, 607, 613, 617, 647, 653, 673, 677, 683, 727
Offset: 1
-
pr=5; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
-
isok(p) = isprime(p) && (p != 5) && (znorder(Mod(5, p)) == p-1); \\ Michel Marcus, Apr 27 2019
A297408
Where the prime race among 10k+1, ..., 10k+9 changes leader.
Original entry on oeis.org
2, 13, 157, 193, 347, 383, 587, 673, 907, 1163, 1327, 1483, 1907, 1933, 2897, 4723, 5557, 5573, 6037, 6113, 6637, 6673, 7487, 8273, 8317, 8363, 8387, 8443, 8467, 8573, 8647, 8803, 8837, 8933, 9277, 9293, 10067, 10103, 11897, 11923, 12037, 12073, 12107, 12143
Offset: 1
Cf.
A007352,
A007350,
A007353,
A007354,
A274121,
A274122,
A274123,
A297406,
A297407,
A297408,
A297410,
A297411.
-
a297408(limit)={my(v=vector(10),vm=0,ivm=0,imv); forprime(p=2,limit,my(m=p%10);v[m]++;my(mv=vecmax(v,&imv));if(mv>vm,if(imv!=ivm,print1(p,", "); ivm=imv);vm=mv))};
a297408(12500) \\ Hugo Pfoertner, Jul 25 2021
-
from sympy import nextprime
from itertools import islice
def agen():
c, p, leader = [0 for i in range(10)], 1, None
while True:
p = nextprime(p); last = p%10; c[last] += 1; m = max(c)
if c.count(m) == 1 and c.index(m) == last and last != leader:
yield p; leader = last
print(list(islice(agen(), 44))) # Michael S. Branicky, Dec 20 2022
A007353
Where the prime race among 5k+1, ..., 5k+4 changes leader.
Original entry on oeis.org
2, 83, 137, 293, 337, 443, 487, 523, 557, 743, 797, 1213, 1277, 1523, 1657, 1733, 1867, 1973, 2027, 2063, 2797, 2833, 2887, 4733, 5227, 5323, 5437, 5503, 5527, 5623, 5897, 5923, 6007, 6133, 6317, 6353, 6427, 6563, 6607, 6703, 7187, 7283, 7307, 7393, 7477, 8963
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A007354
Where the prime race among 7k+1, ..., 7k+6 changes leader.
Original entry on oeis.org
2, 17, 131, 227, 733, 829, 929, 997, 1097, 1123, 1237, 1277, 1447, 1487, 1531, 1627, 1811, 1907, 1993, 2141, 2203, 2267, 2441, 2677, 2707, 3209, 3299, 3433, 3547, 3853, 4003, 4021, 4507, 4679, 4787, 4931, 5081, 5113, 7537, 7577, 7649, 7759, 7817, 8039, 8461, 8543
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
primerace(mod,limit)={my(v=vector(mod), vm=0, ivm=0, imv); forprime(p=2, limit, my(m=p%mod); v[m+1]++; v[m+1]++; my(mv=vecmax(v, &imv)); if(mv>vm, if(imv!=ivm, print1(p, ", "); ivm=imv); vm=mv))};
primerace(7,8600) \\ Hugo Pfoertner, Jul 25 2021
A297406
Where the prime race among 8k+1, ..., 8k+7 changes leader.
Original entry on oeis.org
2, 11, 37, 83, 197, 227, 271, 293, 347, 373, 487, 547, 853, 907, 1069, 1447, 1733, 1831, 1949, 2027, 2053, 2131, 2237, 2251, 2309, 2719, 2749, 3019, 3061, 3083, 3733, 3779, 3877, 3931, 4919, 5179, 5303, 5347, 5407, 6661, 6911, 6949, 6967, 7459, 7789
Offset: 1
-
X:= Vector(4): X[2]:= 1: m:= 3: p:= 3: count:= 1: R:= 2:
for i from 2 while count < 100 do
p:= nextprime(p);
j:= ((p mod 8)+1)/2;
X[j]:= X[j]+1;
mp:= max[index](X);
if mp <> m and X[mp] > X[m] then
m:= mp;
R:= R,p;
count:= count+1;
fi
od:
R; # Robert Israel, Nov 21 2024
A297407
Where the prime race among 9k+1, ..., 9k+8 changes leader.
Original entry on oeis.org
2, 167, 191, 419, 461, 563, 587, 617, 677, 761, 857, 881, 929, 1427, 1451, 1607, 1667, 1777, 1823, 1867, 1913, 2351, 2399, 2459, 4127, 4583, 5039, 5087, 5171, 7283, 7349, 7517, 7547, 7643, 7691, 7901, 8681, 8837, 8933, 11243, 11903, 11927, 18329, 18371, 19913
Offset: 1
-
V:= <(0$8)>:
lead:= 1:
Res:= NULL:
count:= 0:
p:= 1:
while count < 100 do
p:= nextprime(p);
t:= p mod 9;
V[t]:= V[t]+1;
if V[t] > V[lead] then
lead:= t;
Res:= Res, p;
count:= count+1;
fi
od:
Res; # Robert Israel, Jan 01 2018
A297410
Where the prime race among 11k+1, ..., 11k+10 changes leader.
Original entry on oeis.org
2, 73, 101, 149, 233, 359, 431, 509, 563, 1051, 1091, 1151, 1259, 1459, 1553, 1811, 2609, 2713, 2741, 4363, 4507, 4561, 4919, 5023, 5189, 6761, 7321, 7433, 7717, 7829, 8039, 8081, 8951, 9043, 9203, 9337, 9851, 9931, 10181, 10457, 11437, 11491, 13099, 19841
Offset: 1
A297411
Where the prime race among 12k+1, ..., 12k+11 changes leader.
Original entry on oeis.org
2, 17, 79, 101, 163, 197, 211, 263, 281, 379, 401, 443, 461, 479, 631, 677, 739, 809, 907, 953, 1087, 1109, 1171, 1193, 1543, 1607, 1721, 1759, 2063, 2203, 2417, 2543, 2633, 2711, 2731, 2753, 3203, 3221, 3323, 3607, 3803, 3847, 3863, 3943, 4397
Offset: 1
Comments