cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 99 results. Next

A348030 a(n) = A003968(n) - n, where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 10, 3, 0, 0, 6, 0, 0, 0, 38, 0, 6, 0, 10, 0, 0, 0, 30, 5, 0, 21, 14, 0, 0, 0, 130, 0, 0, 0, 36, 0, 0, 0, 50, 0, 0, 0, 22, 15, 0, 0, 114, 7, 10, 0, 26, 0, 42, 0, 70, 0, 0, 0, 30, 0, 0, 21, 422, 0, 0, 0, 34, 0, 0, 0, 144, 0, 0, 15, 38, 0, 0, 0, 190, 111, 0, 0, 42, 0, 0, 0, 110, 0, 30, 0, 46
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Comments

Möbius transform of A348029(n), which is A003959(n) - sigma(n).

Crossrefs

Cf. A003959, A003968, A005117 (positions of zeros), A005596, A008683, A104141, A348029, A348036.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348030(n) = (A003968(n)-n);

Formula

a(n) = A003968(n) - n.
a(n) = Sum_{d|n} A008683(n/d) * A348029(d).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^3 - p^2 - p)) - 1 = A104141/A005596 - 1 = 0.625665... . - Amiram Eldar, May 29 2025

A119534 Largest prime divisor of numerator of the n-th Artin's product.

Original entry on oeis.org

5, 19, 41, 109, 109, 271, 271, 271, 811, 929, 929, 929, 929, 2161, 2161, 2161, 3659, 4421, 4969, 4969, 4969, 4969, 4969, 9311, 10099, 10099, 10099, 10099, 10099, 16001, 17029, 17029, 19181, 22051, 22051, 22051, 22051, 22051, 22051, 22051, 32579
Offset: 2

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]],{n,2,100}]

Formula

a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].

A192864 Lower flat primes: odd primes p such that p-1 is a squarefree number times a power of two.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 103, 107, 113, 131, 137, 139, 149, 157, 167, 173, 179, 191, 193, 211, 223, 227, 229, 233, 239, 241, 257, 263, 269, 277, 281, 283, 293, 311, 313, 317, 331, 337, 347, 349, 353, 359
Offset: 1

Views

Author

Keywords

Comments

Broughan & Qizhi show that this sequence has relative density 2*A in the primes, where A = A005596 is Artin's constant. Consequently, there exists a flat number between x and (1+e)x for every e > 0 and large enough x.

Crossrefs

Subsequence of A192863.

Programs

  • Mathematica
    Select[Range[3, 360, 2], PrimeQ[#] && SquareFreeQ[(# - 1)/2^IntegerExponent[# - 1, 2]] &] (* Amiram Eldar, Aug 30 2020 *)
  • PARI
    is(n)=n%2&&isprime(n)&&issquarefree((n-1)>>valuation(n-1,2)) \\ corrected by Amiram Eldar, Aug 30 2020

Formula

a(n) ~ k * n * log(n) with k = 1/(2*A) = 1.3370563...

Extensions

Data corrected by Amiram Eldar, Aug 30 2020

A323576 Primes p such that 2 is a primitive root modulo p while 128 is not.

Original entry on oeis.org

29, 197, 211, 379, 421, 491, 547, 659, 701, 757, 827, 883, 1373, 1499, 1667, 1877, 2213, 2269, 2339, 2437, 2549, 2843, 3011, 3067, 3347, 3557, 3571, 3613, 3851, 3907, 4019, 4229, 4243, 4397, 4621, 4691, 4789, 4957, 5573, 5741, 5923, 6203, 6469, 6637, 6763, 6917
Offset: 1

Views

Author

Jianing Song, Aug 30 2019

Keywords

Comments

Primes p such that 2 is a primitive root modulo p (i.e., p is in A001122) and that p == 1 (mod 7).
According to Artin's conjecture, the number of terms <= N is roughly ((6/41)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N).

Crossrefs

Primes p such that 2 is a primitive root modulo p and that p == 1 (mod q): A307627 (q=3), A307628 (q=5), this sequence (q=7), A323577 (q=11), A323590 (q=13).

Programs

  • PARI
    forprime(p=3, 7000, if(znorder(Mod(2, p))==(p-1) && p%7==1, print1(p, ", ")))

A323577 Primes p such that 2 is a primitive root modulo p while 2048 is not.

Original entry on oeis.org

67, 419, 661, 859, 947, 1123, 1277, 1453, 2069, 2267, 2333, 2531, 2707, 2861, 3037, 3323, 3499, 3851, 3917, 4093, 4357, 4621, 4973, 5171, 5501, 6029, 6469, 6491, 6733, 7019, 7283, 7349, 7459, 7547, 7789, 7877, 8053, 8669, 8867, 8933, 9901, 9923, 10099, 10253, 10891, 10979
Offset: 1

Views

Author

Jianing Song, Aug 30 2019

Keywords

Comments

Primes p such that 2 is a primitive root modulo p (i.e., p is in A001122) and that p == 1 (mod 11).
According to Artin's conjecture, the number of terms <= N is roughly ((10/109)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N).

Crossrefs

Primes p such that 2 is a primitive root modulo p and that p == 1 (mod q): A307627 (q=3), A307628 (q=5), A323576 (q=7), this sequence (q=11), A323590 (q=13).

Programs

  • PARI
    forprime(p=3, 12000, if(znorder(Mod(2, p))==(p-1) && p%11==1, print1(p, ", ")))

A323590 Primes p such that 2 is a primitive root modulo p while 8192 is not.

Original entry on oeis.org

53, 131, 443, 547, 677, 859, 1171, 1301, 1483, 2029, 2237, 2549, 2861, 2939, 3797, 4603, 5227, 5851, 6397, 6709, 6917, 7229, 7307, 7411, 7541, 7853, 8243, 8269, 8867, 8971, 9283, 9491, 9803, 9907, 10037, 10141, 10427, 10973, 11779, 11909, 11987, 12611, 12637, 12923
Offset: 1

Views

Author

Jianing Song, Aug 30 2019

Keywords

Comments

Primes p such that 2 is a primitive root modulo p (i.e., p is in A001122) and that p == 1 (mod 13).
According to Artin's conjecture, the number of terms <= N is roughly ((12/155)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N).

Crossrefs

Primes p such that 2 is a primitive root modulo p and that p == 1 (mod q): A307627 (q=3), A307628 (q=5), A323576 (q=7), A323577 (q=11), this sequence (q=13).

Programs

  • Maple
    filter:= proc(p) isprime(p) and numtheory:-order(2,p) = p-1 end proc:
    select(filter, [seq(i, i = 1 .. 13000, 26)]); # Robert Israel, Dec 20 2023
  • PARI
    forprime(p=3, 13000, if(znorder(Mod(2, p))==(p-1) && p%13==1, print1(p, ", ")))

A323617 Primes p such that 3 is a primitive root modulo p while 243 is not.

Original entry on oeis.org

31, 101, 211, 281, 331, 401, 461, 521, 571, 631, 641, 691, 701, 751, 811, 821, 881, 941, 1061, 1231, 1291, 1301, 1361, 1481, 1601, 1721, 1831, 1901, 1951, 2011, 2081, 2141, 2311, 2371, 2381, 2731, 2741, 2801, 2861, 3041, 3271, 3331, 3391, 3461, 3571, 3581, 3701, 3761, 3821, 3931
Offset: 1

Views

Author

Jianing Song, Aug 30 2019

Keywords

Comments

Primes p such that 3 is a primitive root modulo p (i.e., p is in A019334) and that p == 1 (mod 5).
According to Artin's conjecture, the number of terms <= N is roughly ((4/19)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N).

Crossrefs

Primes p such that 3 is a primitive root modulo p and that p == 1 (mod q): A323594 (q=3), this sequence (q=5), A323628 (q=7).

Programs

  • PARI
    forprime(p=5, 4000, if(znorder(Mod(3, p))==(p-1) && p%5==1, print1(p, ", ")))

A323628 Primes p such that 3 is a primitive root modulo p while 2187 is not.

Original entry on oeis.org

29, 43, 113, 127, 197, 211, 281, 379, 449, 463, 617, 631, 701, 953, 1373, 1709, 1723, 2129, 2143, 2213, 2311, 2381, 2549, 2633, 2647, 2731, 2801, 2969, 3137, 3389, 3557, 3571, 3823, 4159, 4229, 4243, 4327, 4397, 4481, 4649, 4663, 4817, 4831, 4999, 5237, 5419
Offset: 1

Views

Author

Jianing Song, Aug 30 2019

Keywords

Comments

Primes p such that 3 is a primitive root modulo p (i.e., p is in A019334) and that p == 1 (mod 7).
According to Artin's conjecture, the number of terms <= N is roughly ((6/41)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N).

Crossrefs

Primes p such that 3 is a primitive root modulo p and that p == 1 (mod q): A323594 (q=3), A323617 (q=5), this sequence (q=7).

Programs

  • Maple
    select(p -> isprime(p) and numtheory:-order(3,p)=p-1, [seq(i,i=1..10000,7)]); # Robert Israel, Sep 01 2019
  • PARI
    forprime(p=5, 5500, if(znorder(Mod(3, p))==(p-1) && p%7==1, print1(p, ", ")))

A336654 Numbers k such that lambda(k) is squarefree, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 18, 21, 22, 23, 24, 28, 31, 33, 36, 42, 43, 44, 46, 47, 49, 56, 59, 62, 63, 66, 67, 69, 71, 72, 77, 79, 83, 84, 86, 88, 92, 93, 94, 98, 99, 103, 107, 118, 121, 124, 126, 129, 131, 132, 134, 138, 139, 141, 142, 147, 154, 158, 161
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2020

Keywords

Examples

			6 is a term since lambda(6) = 2 is squarefree.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[160], SquareFreeQ[CarmichaelLambda[#]] &]

Formula

The number of terms not exceeding x is (k + o(1)) * x/(log(x)^(1-a)), where a = 0.373955... is Artin's constant (A005596), and k = 0.80328... is another constant (Pappalardi et al., 2003).

A007349 Primes with both 10 and -10 as primitive root.

Original entry on oeis.org

17, 29, 61, 97, 109, 113, 149, 181, 193, 229, 233, 257, 269, 313, 337, 389, 433, 461, 509, 541, 577, 593, 701, 709, 821, 857, 937, 941, 953, 977, 1021, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1217, 1229, 1297, 1301, 1381, 1429, 1433, 1549, 1553, 1621, 1697, 1709, 1741, 1777, 1789, 1861, 1873, 1913, 1949
Offset: 1

Views

Author

Keywords

Comments

Intersection of A006883 and A002144. - Davide Rotondo, May 21 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == MultiplicativeOrder[-pr, # ] == #-1 &]
    Select[Prime[Range[5,200]],PrimitiveRoot[#,10]==10&&PrimitiveRoot[#,#-10] == #-10&] (* Harvey P. Dale, Oct 10 2019 *)
  • PARI
    forprime(p=11,2000,if(znorder(Mod(10,p))==p-1&&znorder(Mod(-10,p))==p-1,print1(p,", "))); \\ Joerg Arndt, May 21 2025
Previous Showing 61-70 of 99 results. Next