A316653
Number of series-reduced rooted identity trees with n leaves spanning an initial interval of positive integers.
Original entry on oeis.org
1, 1, 6, 58, 774, 13171, 272700, 6655962, 187172762, 5959665653, 211947272186, 8327259067439, 358211528524432, 16744766791743136, 845195057333580332, 45814333121920927067, 2654330505021077873594, 163687811930206581162063, 10705203621191765328300832
Offset: 1
The a(3) = 6 trees are (1(12)), (2(12)), (1(23)), (2(13)), (3(12)), (123).
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
-
\\ here R(n,2) is A031148.
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, WeighT(concat(v,[0]))[n])); v}
seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
A316656
Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 0, 4, 3, 1, 0, 9, 0, 1, 6, 26, 0, 36, 0, 16, 10, 1, 0, 92, 21, 1, 197, 25, 0, 100, 0, 236, 15, 1, 53, 474
Offset: 1
Sequence of sets of trees begins:
1:
2: 1
3:
4: (12)
5:
6: (1(12))
7:
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(2(12))), (2(1(12))), (12(12))
10: (1(1(12)))
11:
12: (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), ((12)(13)), (12(13)), (13(12))
Cf.
A000081,
A000311,
A000669,
A001678,
A004111,
A005804,
A056239,
A141268,
A181821,
A292504,
A296150,
A300660,
A304660.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,30}]
A330467
Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The singleton-reduced version is
A316652.
Not requiring weakly decreasing multiplicities gives
A330469.
The case where the leaves are sets is
A330625.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A318812,
A318849,
A319312,
A330471,
A330475.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
A330469
Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.
Original entry on oeis.org
1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0
The a(3) = 24 trees:
(123) (122) (112) (111)
((1)(23)) ((1)(22)) ((1)(12)) ((1)(11))
((2)(13)) ((2)(12)) ((2)(11)) ((1)(1)(1))
((3)(12)) ((1)(2)(2)) ((1)(1)(2)) ((1)((1)(1)))
((1)(2)(3)) ((1)((2)(2))) ((1)((1)(2)))
((1)((2)(3))) ((2)((1)(2))) ((2)((1)(1)))
((2)((1)(3)))
((3)((1)(2)))
The singleton-reduced version is
A316651.
The strongly normal case is
A330467.
The case when leaves are sets is
A330764.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A316652,
A318812,
A318849,
A319312,
A330625.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019
A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330475.
The version where the atoms are the prime indices of n is
A330665.
The (weakly) normal version is
A330676.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of strongly normal multisets are
A035310.
Series-reduced rooted trees with strongly normal leaves are
A316652.
Cf.
A000311,
A000669,
A001055,
A001678,
A005121,
A005804,
A316651,
A318812,
A330467,
A330474,
A330625,
A330628,
A330664,
A330677,
A330679.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A316654
Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
Original entry on oeis.org
1, 1, 5, 39, 387, 4960, 74088, 1312716, 26239484, 595023510, 14908285892, 412903136867, 12448252189622, 407804188400373, 14380454869464352, 544428684832123828, 21991444994187529639, 945234507638271696504, 43042162953650721470752, 2071216980365429970912347
Offset: 1
The a(3) = 5 trees are (1(12)), (1(23)), (2(13)), (3(12)), (123).
Cf.
A000081,
A000311,
A000669,
A001678,
A004111,
A005804,
A141268,
A181821,
A292504,
A300660,
A304660.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n]=polcoef(sWeighT(x*Ser(v[1..n])), n)); x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Jan 22 2021
A318849
Number of orderless tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 11, 8, 27, 20, 30, 38, 96, 74, 114, 58, 308, 234, 1052, 176, 509, 278, 3648, 374, 600, 1076, 1760, 814, 13003, 1306, 47006, 612, 2226, 4200, 3094, 2914, 172605, 16588, 9814, 2168, 640662, 6998, 2402388, 3698, 11496, 65936, 9082538, 4914, 17996
Offset: 1
The a(7) = 11 orderless tree-partitions of {1,1,1,1}:
(1111)
((1)(111))
((11)(11))
((1)(1)(11))
((1)((1)(11)))
((11)((1)(1)))
((1)(1)(1)(1))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
((1)((1)((1)(1))))
(((1)(1))((1)(1)))
Cf.
A000311,
A001055,
A196545,
A292504,
A292505,
A305936,
A316655,
A318762,
A318812,
A318813,
A318847.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
olmsptrees[m_]:=Prepend[Union@@Table[Sort/@Tuples[olmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[olmsptrees[nrmptn[n]]],{n,15}]
A320169
Number of balanced enriched p-trees of weight n.
Original entry on oeis.org
1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
Offset: 1
The a(1) = 1 through a(6) = 20 balanced enriched p-trees:
1 2 3 4 5 6
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (221) (51)
(1111) (311) (222)
((11)(11)) (2111) (321)
(11111) (411)
((21)(11)) (2211)
((111)(11)) (3111)
(21111)
(111111)
((21)(21))
((22)(11))
((31)(11))
((111)(21))
((21)(111))
((211)(11))
((111)(111))
((1111)(11))
((11)(11)(11))
Cf.
A000311,
A000669,
A001678,
A005804,
A048816,
A079500,
A119262,
A120803,
A141268,
A196545,
A289501,
A319312.
-
eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n];
Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}]
-
seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018
A330624
Number of non-isomorphic series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n elements.
Original entry on oeis.org
1, 1, 3, 10, 61, 410, 3630
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 10 trees:
{1} {1,2} {1,2,3}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
{{1},{{1},{1}}}
{{1},{{1},{2}}}
{{1},{{2},{3}}}
{{2},{{1},{1}}}
The version with multisets as leaves is
A330465.
The singleton-reduced case is
A330626.
A labeled version is
A330625 (strongly normal).
The case with all atoms distinct is
A141268.
The case where all leaves are singletons is
A330470.
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Comments