A078558
GCD of sigma(p#) and phi(p#) where p# = A002110(n) is the product of the first n primes.
Original entry on oeis.org
1, 2, 8, 48, 96, 1152, 9216, 1658880, 3317760, 92897280, 2786918400, 100329062400, 802632499200, 370816214630400, 741632429260800, 2966529717043200, 29665297170432000, 355983566045184000
Offset: 1
m=2,3,30,210 primorials are balanced numbers so these GCD() equals phi(): a(n)=1,2,8,48 (see A005867).
-
GCD[DivisorSigma[1,#],EulerPhi[#]]&/@FoldList[Times,Prime[Range[20]]] (* Harvey P. Dale, Feb 28 2016 *)
-
a(n)=gcd(prod(i=1,n,prime(i)-1),prod(i=1,n,prime(i)+1)) \\ Charles R Greathouse IV, Dec 09 2013
A279864
Irregular triangle read by rows: the n-th row corresponds to the natural numbers not exceeding A002110(n) and divisible by the n-th prime but not by a smaller prime.
Original entry on oeis.org
2, 3, 5, 25, 7, 49, 77, 91, 119, 133, 161, 203, 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859
Offset: 1
From _M. F. Hasler_, May 16 2017: (Start)
The triangle starts
2;
3;
5, 25;
7, 49, 77, 91, 119, 133, 161, 203;
11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859, 1903, 1969, 1991, 2057, 2101, 2123, 2167, 2189, 2299;
... (End)
-
Table[Function[p, Select[Range[Times @@ p], Function[k, And[Divisible[k, Last@ p], Total@ Boole@ Divisible[k, Most@ p] == 0]]]]@ Prime@ Range@ n, {n, 5}] // Flatten (* Michael De Vlieger, Dec 21 2016 *)
a[1] = {2}; a[2] = {3}; t[2] = {1, 5}; a[n_] := a[n] = Prime[n]*t[n - 1]; t[x_] := t[x] = Complement[Flatten[Table[k*Product[Prime[j], {j, x - 1}] + t[x - 1], {k, 0, Prime[x] - 1}]], a[x]]; Flatten[Table[a[n], {n, 6}]] (* L. Edson Jeffery, May 16 2017 *)
-
pp=1; for (r=1, 5, forstep(n=prime(r), pp*prime(r), prime(r), if (gcd(n,pp)==1, print1 (n ", "))); pp *= prime(r); print(""))
-
A279864_row(r,p=prime(r),P=prod(i=1,r-1,prime(i)))=select(n->gcd(n,P)==1,p*[1..P]) \\ M. F. Hasler, May 16 2017
A323739
a(n) is the number of residues modulo (4*primorial(n)) of the squares of primes greater than or equal to prime(n+1).
Original entry on oeis.org
2, 1, 1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 0
a(3) = 2 because, for every prime p >= prime(3+1) = 7, p^2 mod (4*2*3*5 = 120) is one of the 2 values {1, 49}:
7^2 mod 120 = 49 mod 120 = 49
11^2 mod 120 = 121 mod 120 = 1
13^2 mod 120 = 169 mod 120 = 49
17^2 mod 120 = 289 mod 120 = 49
19^2 mod 120 = 361 mod 120 = 1
23^2 mod 120 = 529 mod 120 = 49
29^2 mod 120 = 841 mod 120 = 1
...
.
q=(n+1)st b = residues p^2 mod b
n prime 4*primorial(n) for p >= q a(n)
= ========= =============== ======================= ====
0 2 4 = 4 {0,1} 2
1 3 4*2 = 8 {1} 1
2 5 4*2*3 = 24 {1} 1
3 7 4*2*3*5 = 120 {1,49} 2
4 11 4*2*3*5*7 = 840 {1,121,169,289,361,529} 6
A377469
a(n) = (A003309(n)-1)*a(n-1) (n > 1), a(1) = 1, where A003309 are the ludic numbers.
Original entry on oeis.org
1, 1, 2, 8, 48, 480, 5760, 92160, 2027520, 48660480, 1362493440, 49049763840, 1961990553600, 82403603251200, 3790565749555200, 197109418976870400, 11826565138612224000, 780553299148406784000, 54638730940388474880000, 4152543551469524090880000, 340508571220500975452160000
Offset: 1
Since A003309 = (1, 2, 3, 5, 7, 11, 13,17, 23, 25, ...), we get:
a(2) = (2-1)*1 = 1, a(3) = (3-1)*1 = 2, a(4) = (5-1)*2 = 8, a(5) = (7-1)*8 = 48,
a(6) = (11-1)*48 = 480, a(7) = (13-1)*480 = 5760, a(8) = (17-1)*2 = 92160,
a(9) = (23-1)*92160 = 2027520, a(10) = (25-1)*2027520 = 48660480, and so on.
A071349
Numbers k for which the GCD of the k-th primorial number and its totient (A058250) sets record.
Original entry on oeis.org
1, 2, 4, 5, 9, 10, 15, 16, 17, 23, 27, 28, 35, 39, 40, 41, 43, 49, 56, 57, 61, 62, 64, 66, 69, 72, 73, 76, 77, 91, 92, 96, 97, 102, 103, 104, 107, 111, 114, 117, 119, 127, 128, 137, 139, 143, 146, 150, 154, 155, 166, 171, 181, 182, 186, 195, 196, 201, 208, 214, 215
Offset: 1
-
q[n_] := Product[Prime[i], {i, 1, n}]; fq[n_] := Product[Prime[i] - 1, {i, 1, n}];
a=0; Do[s=GCD[q[n], fq[n]]; If[s>a, a=s; Print[n]], {n, 1, 1000}]
A071350
Distinct values of A058250; these terms appear first at subscripts listed in A071349.
Original entry on oeis.org
1, 2, 6, 30, 330, 2310, 53130, 690690, 20030010, 821230410, 13960916970, 739928599410, 27377358178170, 2272320728788110, 97709791337888730, 8696171429072096970, 165227257152369842430, 18670680058217792194590
Offset: 1
-
Prepend[FoldList[Times,DeleteDuplicates[Rest[Flatten[FactorInteger[#][[All, 1]]&/@(Prime[Range[100]]-1)]]]],1] (* Jamie Morken, Apr 27 2021 after Harvey P. Dale at A112037, May 26 2019 *)
-
f(n) = my(pr=prod(k=1, n, prime(k))); gcd(pr, eulerphi(pr)); \\ A058250
lista(nn) = Set(vector(nn, k, f(k))); \\ Michel Marcus, Apr 27 2021
A098591
a(k) contains primality information for the numbers in the interval (k*30,...,(k+1)*30) packed into one byte using the fact that only numbers == 1, 7, 11, 13, 17, 19, 23, 29 mod 30 can be prime.
Original entry on oeis.org
223, 239, 126, 182, 219, 61, 249, 213, 79, 30, 243, 234, 166, 237, 158, 230, 12, 211, 211, 59, 221, 89, 165, 106, 103, 146, 189, 120, 30, 166, 86, 86, 227, 173, 45, 222, 42, 76, 85, 217, 163, 240, 159, 3, 84, 161, 248, 46, 253, 68, 233, 102, 246, 19, 58, 184, 76
Offset: 1
a(1)=223: From the list of prime candidates between 30 and 60 only the number 49 is composite. Therefore
a(1) = 2^0 (representing 30 + 1)
+ 2^1 (representing 30 + 7)
+ 2^2 (representing 30 + 11)
+ 2^3 (representing 30 + 13)
+ 2^4 (representing 30 + 17)
+ 2^6 (representing 30 + 23)
+ 2^7 (representing 30 + 29)
= 1 + 2 + 4 + 8 + 16 + 64 + 128 = 223.
a(17): There are 2 primes in the interval (17*30, 17*30 + 30) = (510,540): 521 == 11 (mod 30) and 523 == 13 (mod 30). Therefore a(17) = 2^2 (representing 510 + 11) + 2^3 (representing 510 + 13) = 4 + 8 = 12.
a(360) = 0 (1st occurrence), no primes between 360*30 = 10800 and 10830. - _Frank Ellermann_, Apr 03 2020
Cf.
A000040 (prime numbers),
A006880 (number of primes < 10^n),
A098592 (number of primes in intervals (30*k, 30*(k+1))),
A005867 (primorial sieving candidates),
A007775 (7-rough numbers, corresponding to the bits).
-
With[{s = Select[Range@ 30, CoprimeQ[#, 30] &]}, Array[Total[2^(Position[30 # + s, ?PrimeQ][[All, 1]] - 1) ] &, 57]] (* _Michael De Vlieger, Sep 10 2018 *)
-
a(k) = {vec = [1, 7, 11, 13, 17, 19, 23, 29]; return (sum(i=1, length(vec), isprime(30*k+vec[i])*(1 << (i-1))));} \\ Michel Marcus, Jan 31 2013
-
from sympy import isprime
v = [1, 7, 11, 13, 17, 19, 23, 29]
def a(n): return sum(2**k for k, vk in enumerate(v) if isprime(n*30+vk))
print([a(n) for n in range(1, 58)]) # Michael S. Branicky, Oct 10 2021
A216868
Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.
Original entry on oeis.org
3, 4, 13, 67, 560, 6095, 87693, 1491707, 30942952, 795721368, 22614834943, 759296069174, 28510284114397, 1148788714239052, 50932190960133487, 2532582753383324327, 139681393339880282191, 8089483267352888074399, 512986500081861276401709, 34658318003703434434962860
Offset: 1
prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.
- Amiram Eldar, Table of n, a(n) for n = 1..350
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory, Vol. 17, No.3 (1983), pp. 375-388.
- J.-L. Nicolas, Small values of the Euler function and the Riemann hypothesis, arXiv:1202.0729 [math.NT], 2012; Acta Arith., Vol. 155 (2012), pp. 311-321.
-
primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
-
nicolas(n) = {p = 2; pri = 2;for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", ");p = nextprime(p+1);pri *= p;);} \\ Michel Marcus, Oct 06 2012
-
A216868(n)={(n=prod(i=1,n,prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))} \\ M. F. Hasler, Oct 06 2012
A309802
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).
Original entry on oeis.org
1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309803,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 18 2019
A309803
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).
Original entry on oeis.org
-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
Comments