cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 117 results. Next

A053012 Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000

Keywords

Comments

19, the 3rd octahedral number, is the only prime platonic number. - Jean-François Alcover, Oct 11 2012

Crossrefs

Numbers of partitions into Platonic numbers: A226748, A226749.

Programs

  • Haskell
    a053012 n = a053012_list !! (n-1)
    a053012_list = tail $ f
       [a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
       where f pss = m : f (map (dropWhile (<= m)) pss)
                     where m = minimum (map head pss)
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Mathematica
    nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
  • PARI
    listpoly(lim, poly[..])=my(v=List()); for(i=1,#poly, my(P=poly[i], x=variable(P), f=k->subst(P,x,k),n,t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
    list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016

A175577 Decimal expansion of the sum of the reciprocals of the octahedral numbers (A005900).

Original entry on oeis.org

1, 2, 7, 8, 1, 8, 5, 1, 5, 9, 0, 9, 0, 9, 4, 6, 1, 7, 9, 5, 4, 0, 3, 9, 0, 9, 4, 8, 3, 6, 7, 5, 7, 1, 3, 3, 8, 4, 2, 3, 9, 0, 1, 5, 3, 6, 8, 5, 1, 4, 0, 2, 0, 2, 0, 1, 7, 0, 3, 4, 6, 3, 8, 0, 4, 1, 6, 5, 7, 9, 9, 9, 1, 8, 3, 0, 6, 2, 0, 8, 2, 4, 4, 1, 8, 3, 6, 3, 2, 4, 5, 2, 0, 5, 0, 0, 7, 9, 6, 2, 3, 0, 5, 3, 9
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Defined by Sum_{n>=1} 1/A005900(n) = 1/1 + 1/6 + 1/19 + 1/44 + ...
Equals 3*(gamma + Re psi(i/sqrt 2) ) = 3* Re(A001620 + psi(i*A010503)) where psi(i*A010503) = -0.1511539... + i*2.3152942... is a digamma function and i the imaginary unit.

Examples

			1.2781851590909461795403909483...
		

Crossrefs

Cf. A005900 (octahedral numbers).
Cf. sums of inverses: A152623 (tetrahedral numbers), A002117 (cubes), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).

Programs

  • Maple
    Digits := 120 : 3*(gamma+Psi(I/sqrt(2))); evalf(Re(%)) ;
  • Mathematica
    RealDigits[ 3/2*(2*EulerGamma + Re[PolyGamma[0, 1 - I/Sqrt[2]] + PolyGamma[0, 1 + I/Sqrt[2]]]), 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    3*Euler+3*real(psi(I/sqrt(2))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumnumrat(3/n/(2*n^2 + 1),1) \\ Charles R Greathouse IV, Feb 08 2023

A053678 Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives k values.

Original entry on oeis.org

5, 17, 191, 1412, 2143, 8393, 5346, 32475, 99234, 158712, 393981, 401023, 514617, 921485, 577350, 910495, 1430793, 3236406, 462236, 4122855
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000

Keywords

Examples

			Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)
		

Crossrefs

i values are A053676 and j values are A053677.

Programs

  • Mathematica
    (* This is just a check of k-values, given i-values *) A053676 = {7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598}; r[i_] := Reduce[0 < k <= j && 2*i^3 + i == 2*j^3 + j + 2*k^3 + k, {j, k}, Integers]; A053678 = Table[res = {i, j, k} /. ToRules[r[i]]; Print[res]; res, {i, A053676}][[All, 3]] (* Jean-François Alcover, Dec 07 2012 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
a(13)-a(16) from Donovan Johnson, Jun 21 2010
a(17)-a(20) from Donovan Johnson, Sep 29 2010

A053676 Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives i values.

Original entry on oeis.org

7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000

Keywords

Comments

a(21) > 10^7. - Donovan Johnson, Sep 29 2010

Examples

			Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)
		

References

  • Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
  • Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.

Crossrefs

Cf. A005900, A053677 (j values), A053678 (k values).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
a(13)-a(16) from Donovan Johnson, Jun 21 2010
a(17)-a(20) from Donovan Johnson, Sep 29 2010

A053677 Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives j values.

Original entry on oeis.org

6, 40, 454, 2600, 2586, 20175, 48103, 93097, 105805, 265195, 755100, 803007, 1211000, 1111974, 1493421, 1499160, 2622000, 4309280, 5127195, 5574139
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000

Keywords

Examples

			Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)
		

Crossrefs

i values are A053676 and k values are A053678.

Programs

  • Mathematica
    (* This is just a check of j-values, given i-values *) A053676 = {7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598}; r[i_] := Reduce[0 < k <= j && 2*i^3 + i == 2*j^3 + j + 2*k^3 + k, {j, k}, Integers]; A053677 = Table[res = {i, j, k} /. ToRules[r[i]]; Print[res]; res, {i, A053676}][[All, 2]] (* Jean-François Alcover, Dec 07 2012 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
a(13)-a(16) from Donovan Johnson, Jun 21 2010
a(17)-a(20) from Donovan Johnson, Sep 29 2010

A329072 Numbers that are sums of consecutive octahedral numbers (A005900).

Original entry on oeis.org

0, 1, 6, 7, 19, 25, 26, 44, 63, 69, 70, 85, 129, 146, 148, 154, 155, 231, 275, 294, 300, 301, 344, 377, 462, 489, 506, 525, 531, 532, 575, 670, 721, 806, 833, 850, 869, 875, 876, 891, 1064, 1156, 1159, 1210, 1295, 1339, 1358, 1364, 1365, 1469, 1503, 1561, 1734
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

A103981 Number of prime factors (with multiplicity) of octahedral numbers (A005900).

Original entry on oeis.org

0, 0, 2, 1, 3, 2, 2, 3, 4, 2, 3, 5, 4, 2, 3, 3, 7, 2, 4, 2, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 6, 2, 4, 4, 4, 3, 5, 3, 6, 3, 3, 4, 4, 3, 4, 3, 6, 3, 4, 4, 5, 2, 5, 3, 7, 3, 3, 3, 5, 3, 4, 4, 7, 5, 3, 3, 4, 3, 8, 2, 5, 4, 4, 3, 4, 4, 4, 4, 7, 5, 3, 3, 5, 3, 3
Offset: 0

Views

Author

Jonathan Vos Post, Feb 24 2005

Keywords

Comments

When a(n) = 2, n is a term of A103982: indices of octahedral numbers (A005900) which are semiprimes.

Examples

			a(3) = 1 because OctahedralNumber(3) = A005900(3) = 19, which is prime and thus has only one prime factor. Because the cubic polynomial for octahedral numbers factors into n time a quadratic, the octahedral numbers can never be prime after a(3) = 19.
a(4) = 3 because A005900(4) = (2*4^3 + 4)/3 = 44 = 2 * 2 * 11, which has (with multiplicity) three prime factors.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York, Springer-Verlag, p. 50, 1996.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1952.

Crossrefs

Programs

  • Maple
    seq(numtheory:-bigomega((2*n^3+n)/3),n=0..100); # Robert Israel, Aug 10 2014
  • Mathematica
    a[n_] := PrimeOmega[n*(2*n^2 + 1)/3]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Oct 11 2024 *)

Formula

a(n) = A001222(A005900(n)), n>0. a(n) = Bigomega((2*n^3 + n)/3), n>0.

Extensions

More terms from Wesley Ivan Hurt, Aug 11 2014

A103982 Indices of octahedral numbers (A005900) which are semiprimes.

Original entry on oeis.org

2, 5, 6, 9, 13, 17, 19, 21, 23, 31, 33, 53, 71, 87, 89, 93, 113, 123, 127, 157, 163, 167, 177, 181, 197, 201, 219, 229, 237, 321, 327, 347, 373, 393, 401, 409, 417, 419, 449, 487, 489, 503, 509, 519, 523, 537, 541, 563, 571, 577, 597, 599, 633, 647, 699, 751
Offset: 1

Views

Author

Jonathan Vos Post, Feb 23 2005

Keywords

Comments

Because the cubic polynomial for octahedral numbers factors into n time a quadratic, the octahedral numbers can never be prime after a(3) = 19, but can be semiprime (if n is prime and 2*n^2+1 is triple a prime, or if n is triple a prime and 2*n^2+1 is prime). A005900(37) = 33781 = 11 * 37 * 83, three prime factors with same number of digits. A005900(41) = 45961 = 19 * 41 * 59, three prime factors with same number of digits. A005900(57) = 123481 = 19 * 67 * 97, three prime factors with same number of digits. A005900(67) = 200531 = 41 * 67 * 73, three prime factors with same number of digits. A005900(73) = 259369 = 11 * 17 * 19 * 73, four prime factors with same number of digits.

Examples

			93 is in this sequence because A005900(93) = (2*93^3 + 93)/3 = 536269 = 31 * 17299, which is semiprime.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York, Springer-Verlag, p. 50, 1996.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1952.

Crossrefs

Programs

Formula

Numbers k such that A005900(k) is a term of A001358.
Numbers k such that A103981(k) = 2.
Numbers k such that A001222(A005900(k)) = 2.
Numbers k such that Bigomega((2*k^3 + k)/3) = 2.

Extensions

More terms from Harvey P. Dale, Jun 17 2013

A133330 Sums of exactly three positive octahedral numbers A005900.

Original entry on oeis.org

3, 8, 13, 18, 21, 26, 31, 39, 44, 46, 51, 56, 57, 64, 69, 82, 87, 89, 92, 94, 97, 105, 107, 110, 123, 130, 132, 135, 148, 153, 158, 166, 171, 173, 176, 184, 189, 191, 196, 209, 214, 232, 233, 234, 237, 238, 243, 250, 251, 255, 256, 269, 275, 276, 281, 293, 294
Offset: 1

Views

Author

Jonathan Vos Post, Oct 18 2007

Keywords

References

  • Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.
  • Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.

Crossrefs

Programs

  • Mathematica
    lim = 300; oc[n_] := (2*n^3 + n)/3; nmax = Floor[Solve[oc[n] + oc[1] + oc[1] == lim, n][[1, 1, 2]]]; t = Table[ oc[n], {n, nmax}]; Select[ Union[ Flatten[ Outer[ Plus, t, t, t]]], # <= lim &] (* Jean-François Alcover, Sep 08 2011 *)

A131280 Sums of exactly 4 positive octahedral numbers A005900.

Original entry on oeis.org

4, 9, 14, 19, 22, 24, 27, 32, 37, 40, 45, 47, 50, 52, 57, 58, 62, 63, 65, 70, 75, 76, 83, 88, 90, 93, 95, 98, 100, 101, 103, 106, 108, 111, 113, 116, 124, 126, 129, 131, 133, 136, 138, 141, 142, 149, 151, 154, 159, 164, 167, 172, 174, 176, 177, 179, 182, 185, 190
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2007

Keywords

Comments

Pollock (1850) conjectured that every number is the sum of at most 7 octahedral numbers. Which octahedral numbers are themselves the sum of exactly 4 positive octahedral numbers? To begin with, Oc(3) = Oc(2) + Oc(2) + Oc(2) + Oc(1) = 6 + 6 + 6 + 1 = 19.

References

  • Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005, cites the Pollock reference.
  • Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.

Crossrefs

Programs

  • Mathematica
    With[{octs=Table[(2n^3+n)/3,{n,10}]},Take[Union[Total/@Tuples[octs,4]], 60]] (* Harvey P. Dale, Nov 26 2013 *)
Showing 1-10 of 117 results. Next