cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A278931 Semiprimes whose ternary representations are also semiprime when read as a decimal number.

Original entry on oeis.org

25, 49, 65, 82, 106, 115, 118, 121, 142, 143, 155, 187, 209, 235, 254, 259, 262, 265, 274, 289, 299, 314, 319, 326, 334, 335, 341, 355, 361, 382, 398, 415, 445, 451, 454, 458, 469, 493, 511, 515, 538, 551, 562, 566, 583, 586, 589, 614, 622, 634, 649, 667, 679
Offset: 1

Views

Author

K. D. Bajpai, Dec 04 2016

Keywords

Examples

			65 is in the sequence because 5*13 = 65 (semiprime) and its ternary representation, 2102 = 2*1051, when read as a decimal number, is also semiprime.
115 is in the sequence because 5*23 = 115 (semiprime) and its ternary representation, 11021 = 103*107, when read as a decimal number, is also semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeOmega[#] == 2 && PrimeOmega[FromDigits[ IntegerDigits[ #, 3]]] == 2 &]

A285300 Numbers k such that 3^(k-1) == 2^(k-1) !== 1 (mod k).

Original entry on oeis.org

65, 133, 529, 793, 1649, 2059, 2321, 4187, 5185, 6305, 6541, 6697, 6817, 7471, 7613, 8113, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 19171, 19201, 19909, 21349, 21667, 22177, 26065, 26467, 32873, 35443, 36569, 37333, 38897, 42121, 42127, 44023, 47081
Offset: 1

Views

Author

Thomas Ordowski, Apr 16 2017

Keywords

Comments

All terms are odd composite numbers. There are no pseudoprimes to bases 2 or 3 in this sequence.
Are there infinitely many numbers of this kind?
From Max Alekseyev, Apr 16 2017: (Start)
Also, Fermat pseudoprimes base 2/3 that are not Fermat pseudoprimes base 2.
Also, the set difference of A073631 and either of ({1} U A001567), ({1} U A005935), or ({1} U A052155). (End)

Examples

			2^64 = 18446744073709551616 = 65 * 283796062672454640 + 16 and 3^64 = 3433683820292512484657849089281 = 65 * 52825904927577115148582293681 + 16. Therefore 65 is in the sequence.
Note: a(3) = 529 = 23^2 and a(40) = 47081 = 23^2 * 89.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      t:= 3 &^(n-1) mod n;
      if t = 1 then return false fi;
      t = 2 &^(n-1) mod n;
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Apr 27 2017
  • Mathematica
    Select[Range[2, 10^5], PowerMod[2, # - 1, #] == PowerMod[3, # - 1, #] != 1 &] (* Giovanni Resta, Apr 16 2017 *)
  • PARI
    is(n) = Mod(3, n)^(n-1)==2^(n-1) && Mod(2, n)^(n-1)!=1 \\ Felix Fröhlich, Apr 27 2017

Extensions

More terms from Giovanni Resta, Apr 16 2017

A308079 Pseudoprimes to base 3 that divide a Mersenne number.

Original entry on oeis.org

10974881, 193949641, 717653129, 8762386393, 19683169273, 24802217129, 78618861353, 121271968201, 146050578391, 169905267617, 188684740591, 232153956569, 290762221753, 306091598201, 336675266287, 394233108121, 592050558553
Offset: 1

Views

Author

Jeppe Stig Nielsen, May 11 2019

Keywords

Comments

Members of A005935 that divide a member of A001348.
Odd members k of A005935 such that the multiplicative order of 2 modulo k is a prime. Odd members k of A005935 such that A002326((k-1)/2) is prime.
The known entries are proper divisors of a Mersenne number. It is not known if the Mersenne number itself can belong to this sequence.

Examples

			10974881 is in the sequence because it divides 2^239 - 1 (and 239 is prime), it is not a prime, but 3^10974880 === 1 (mod 10974881).
		

Crossrefs

Intersection of A005935 and A122094.
Subsequence of A052155.

Programs

  • PARI
    forstep(n=3,+oo,2,Mod(3,n)^(n-1)==1&&!ispseudoprime(n)&&ispseudoprime(znorder(Mod(2,n)))&&print1(n,", "))

A318055 Numbers k such that gcd(k, 2^k - 2) = 1 and gcd(k, 3^k - 3) > 1.

Original entry on oeis.org

247, 403, 559, 715, 871, 1027, 1339, 1495, 1651, 1807, 1963, 2009, 2035, 2119, 2587, 2743, 2899, 2993, 3055, 3211, 3523, 3649, 3679, 3835, 3977, 3991, 4147, 4303, 4331, 4453, 4615, 4633, 4699, 4771, 4927, 5239, 5395, 5617, 5707, 5863, 5995, 6019, 6031, 6161, 6331, 6487, 6799, 6929, 6955, 7081, 7111
Offset: 1

Views

Author

Thomas Ordowski, Aug 14 2018

Keywords

Comments

Odd numbers k such that gcd(k,2^(k-1)-1) = 1 and gcd(k,3^(k-1)-1) > 1.
It seems that a(n) == 91 (mod 156) for infinitely many n.
Fermat pseudoprimes to base 3 (A005935) in this sequence are 16531, 49051, 72041, ...

Crossrefs

Subsequence of A267999 and probably of A121707.
Cf. A139613(2n+1): it gives many terms of the sequence.
Cf. A005935.

Programs

  • GAP
    Filtered([1..10000],k->Gcd(k,2^k-2) = 1 and Gcd(k,3^k-3) > 1);  # Muniru A Asiru, Oct 07 2018
  • Maple
    select(k->gcd(k,2^k-2) = 1 and gcd(k,3^k-3) > 1,[$1..10000]); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Select[Range[8000], GCD[#, 2^# - 2] == 1 && GCD[#, 3^# - 3] > 1 &] (* Amiram Eldar, Mar 31 2024 *)
  • PARI
    isok(k) = (gcd(k,2^k-2) == 1) && (gcd(k,3^k-3) != 1); \\ Michel Marcus, Aug 14 2018
    

Extensions

More terms from Michel Marcus, Aug 14 2018

A351336 Odd pseudoprimes to base 3; composite terms of A271116.

Original entry on oeis.org

91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 23521, 24661, 24727, 28009, 29161, 29341, 30857, 31621
Offset: 1

Views

Author

Bill McEachen, Feb 07 2022

Keywords

Comments

Only 2760 of the first 10 million terms of A271116 are nonprimes (0.03%). These composite terms are heavily skewed to rightmost digit = 1.
These odd composites all appear in A005935 (A005935 having an additional 27 terms (all parity 0) through the same term = 179146207).

Crossrefs

Intersection of A002808 and A271116; intersection of A005935 and A005408; subsequence of A038509.

Programs

  • Mathematica
    q[n_] := CompositeQ[n] && Divisible[Round[3^n/12], n]; Select[Range[32000], q] (* Amiram Eldar, Feb 09 2022 *)
  • PARI
    is(n) = (n>1) && !isprime(n) && (lift(Mod(3, 4*n)^(n-1))==1); \\ Michel Marcus, Feb 09 2022; after A271116
    
  • PARI
    list(lim)=my(v=List()); forcomposite(n=91,lim\1, if(bittest(34,n%6) && Mod(3,n)^(n-1)==1, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2022

Formula

a(n) ~ (a(n-1)+a(n-2))/2 (conjectured). Bill McEachen, Nov 24 2024

A363215 Integers p > 1 such that 3^d == 1 (mod p) where d = A000265(p-1).

Original entry on oeis.org

2, 11, 13, 23, 47, 59, 71, 83, 107, 109, 121, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 286, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709, 719, 733, 743, 757, 827, 829, 839, 863
Offset: 1

Views

Author

Jeppe Stig Nielsen, May 21 2023

Keywords

Comments

Inspired by an incorrect definition of strong pseudoprime to base 3.
As is obvious from the data, it fails to include all primes. Does include some composite numbers (pseudoprimes), namely 121, 286, 24046, 47197, 82513, ...

Crossrefs

Programs

  • PARI
    is(p)=my(d=p-1);d/=2^valuation(d,2);Mod(3,p)^d==1
    
  • Python
    from itertools import count, islice
    def inA363215(n): return pow(3,n-1>>(~(n-1)&n-2).bit_length(),n)==1
    def A363215_gen(startvalue=2): # generator of terms >= startvalue
        return filter(inA363215,count(max(startvalue,2)))
    A363215_list = list(islice(A363215_gen(),20)) # Chai Wah Wu, May 22 2023

A374976 Odd k with p^k mod k != p for all primes p.

Original entry on oeis.org

1, 9, 27, 63, 75, 81, 115, 119, 125, 189, 207, 209, 215, 235, 243, 279, 299, 319, 323, 387, 407, 413, 423, 515, 517, 531, 535, 551, 567, 575, 583, 611, 621, 623, 667, 675, 707, 713, 729, 731, 747, 767, 779, 783, 799, 815, 835, 851, 869, 893, 899, 917, 923, 927
Offset: 1

Views

Author

Francois R. Grieu, Jul 26 2024

Keywords

Comments

Alternatively: 1, and odd composites not a pseudoprime to any prime base.
The sequence contains no primes, no pseudoprimes to any prime base (A001567, A005935, A005936, A005938, A020139, A020141...), and no Carmichael numbers (A002997).

Examples

			k=3 (resp. 5, 7) is not in the sequence because for prime p=2 it holds p^k mod k = 2 which is p.
k=9 is in the sequence because for prime p=2 (resp. 3, 5, 7) it holds p^k mod k = 8 (resp. 0, 8, 1) which is not p, and for all other primes p it holds p>=k therefore p^k mod k can't be p.
		

Crossrefs

Programs

  • Mathematica
    Cases[Range[1, 930, 2], k_/; (For[p=2, p=k)]

A185084 Number of Fermat pseudoprimes to base 3 less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 3, 6, 10, 17, 21, 30, 44, 61, 87, 124, 175, 254, 362, 511, 696, 955, 1313, 1802, 2462, 3321, 4422, 5969, 8089, 10785, 14513, 19333, 25774, 34259, 45522
Offset: 1

Views

Author

Washington Bomfim, Mar 02 2012

Keywords

Examples

			a(1) = a(2) = ... = a(6) = 0 because A005935(1) = 91 > 2^6.
a(7) = 2 since A005935(1) = 91, A005935(2) = 121, A005935(3) = 286, and 121 < 2^7 < 286.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Table[Do[If[! PrimeQ[i] && PowerMod[3, i-1, i] == 1, cnt++], {i, 2^(n-1) + 1, 2^n}]; cnt, {n, 20}] (* T. D. Noe, Mar 02 2012 *)

Extensions

a(35)-a(37) from Amiram Eldar, Jul 18 2021

A247906 a(n) = n-th pseudoprime to base n.

Original entry on oeis.org

561, 286, 341, 781, 1105, 1105, 133, 364, 703, 793, 1105, 1099, 1891, 6541, 1271, 3991, 1649, 1849, 3059, 7363, 2047, 1738, 4537, 1128, 3145, 2993, 5365, 4069, 4097, 7421, 2465, 11305, 2937, 16589, 4495, 2044, 6601, 26885, 13073, 6892, 22945, 3885, 8695, 10879
Offset: 2

Views

Author

Felix Fröhlich, Sep 26 2014

Keywords

Examples

			a(2) = A001567(2) = 561.
a(3) = A005935(3) = 286.
		

Crossrefs

Cf. Pseudoprimes to base b: A001567 (b=2), A005935 (b=3), A020136 (b=4), A005936 (b=5), A005937 (b=6), A005938 (b=7), A020137 (b=8), A020138 (b=9).

Programs

  • PARI
    for(n=2, 20, i=0; forcomposite(c=2, 1e9, if(Mod(n, c)^(c-1)==1, i++; if(i==n, print1(c, ", "); i=0; break({1}))); if(c==1e9, print1(">1e9, "))))

A254519 Largest n-digit pseudoprime to base 3.

Original entry on oeis.org

91, 949, 8911, 97567, 997633, 9959413, 99971821, 999271891, 9999326731, 99997244929, 999989423051, 9999899578441, 99999695823301, 999999050050321, 9999997295187859, 99999997019370001
Offset: 2

Views

Author

Felix Fröhlich, Jan 31 2015

Keywords

Crossrefs

Programs

  • PARI
    for(n=2, 20, k=10^n; while(ispseudoprime(k) || Mod(3, k)^(k-1)!=1, k--); print1(k, ", "))
Previous Showing 31-40 of 43 results. Next