cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A128697 Sum of the eighth powers of the first n Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 258, 6819, 397444, 17174660, 832905381, 38655764742, 1824449669638, 85558387560263, 4022147193262344, 188906406088298760, 8875457294194960201, 416941824416535235082, 19587673124144635235082, 920198619736386114829803, 43229838526402491973562764, 2030880577900713476799525260, 95408186647695095521364177901, 4482153365649947417785489568526
Offset: 0

Views

Author

Stuart Clary, Mar 23 2007

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -17174660, -397444, -6819, -258, -2, -1, 0, [0], 1, 2, 258, 6819, 397444, 17174660, ... This is (-A128697)-reversed followed by A128697.

Crossrefs

Cf. A128698 (alternating sum).
Sums of other powers: A000071, A001654, A005968, A005969, A098531, A098532, A098533.

Programs

  • Magma
    [(&+[Fibonacci(k)^8: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    a[ n_Integer ] := If[ n >= 0, Sum[ Fibonacci[ k ]^8, {k, 1, n} ], Sum[ -Fibonacci[ -k ]^8, {k, 1, -n - 1} ] ]
    Accumulate[Fibonacci[Range[0,20]]^8] (* Harvey P. Dale, Oct 26 2011 *)
  • PARI
    a(n) = sum(k=1, n, fibonacci(k)^8); \\ Michel Marcus, Dec 10 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} F(k)^8.
Closed form: a(n) = F(8n+4)/1875 - (-1)^n 4 F(6n+3)/625 + 28 F(4n+2)/625 - (-1)^n 56 F(2n+1)/625 + 7(2 n + 1)/125.
Recurrence: a(n) - 35 a(n-1) - 680 a(n-2) + 5355 a(n-3) + 7735 a(n-4) - 24752 a(n-5) + 7735 a(n-6) + 5355 a(n-7) - 680 a(n-8) - 35 a(n-9) + a(n-10) = 0.
G.f.: A(x) = (x - 33 x^2 - 492 x^3 + 1784 x^4 + 1784 x^5 - 492 x^6 - 33 x^7 + x^8)/(1 - 35 x - 680 x^2 + 5355 x^3 + 7735 x^4 - 24752 x^5 + 7735 x^6 + 5355 x^7 - 680 x^8 - 35 x^9 + x^10) = x*(1 + x)*(1 - 34 x - 458 x^2 + 2242 x^3 - 458 x^4 - 34 x^5 + x^6)/((1 - x)^2*(1 + 3 x + x^2)*(1 - 7 x + x^2)*(1 + 18 x + x^2)*(1 - 47 x + x^2)).

A163200 Sum of the cubes of the first n odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 9, 134, 2331, 41635, 746604, 13395941, 240376941, 4313380114, 77400441855, 1388894512391, 24922700621784, 447219716262409, 8025032191009041, 144003359719040030, 2584035442744223139, 46368634609657371691, 832051387531037141316, 14930556340948876798829
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -41635, -2331, -134, -9, -1, [0], 1, 9, 134, 2331, 41635, ... This is (-A163200)-reversed followed by A163200, without repeating the 0. That is, a(-n) = -a(n). Thus a(n) is an odd function of n.

Crossrefs

Programs

  • Magma
    [(1/4)*Fibonacci(2*n)*(Fibonacci(2*n)^2+3): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k-1]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
    LinearRecurrence[{21,-56,21,-1}, {0,1,9,134}, 50] (* or *) Table[(1/20)*(Fibonacci[6*n] + 12*Fibonacci[2*n]),{n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
    Join[{0},Accumulate[Fibonacci[Range[1,41,2]]^3]] (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    concat([0],Vec(x*(1 - 12*x + x^2)/((1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} F(2k-1)^3.
a(n) = (1/20)*(F(6*n) + 12*F(2*n)).
a(n) = (1/4)*(F(2n)^3 + 3*F(2n)). (K. Subba Rao)
a(n) = (1/20)*F(2n)*(L(4n) + 13).
a(n) = (1/4)*F(2n)*(F(2n)^2 + 3).
a(n) - 21*a(n-1) + 56*a(n-2) - 21*a(n-3) + a(n-4) = 0.
G.f.: (x - 12*x^2 + x^3)/(1 - 21*x + 56*x^2 - 21*x^3 + x^4) = x*(1 - 12*x + x^2)/((1 - 3*x + x^2 )*(1 - 18*x + x^2)).

A363753 a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).

Original entry on oeis.org

0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0

Views

Author

Hans J. H. Tuenter, Jun 19 2023

Keywords

Comments

Alternating sum of the product of three consecutive Fibonacci numbers, divided by two.
Can also be seen as the alternating sum of the Fibonomial coefficients (n+1,3), A001655.
This sequence is part of a suite of sums over triple products of Fibonacci numbers. Subba Rao (1953) gives closed-form expressions for several Fibonacci sums of this type.

Crossrefs

Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A005968: F(k)^3, A119284: (-1)^k*F(k)^3, A215037: F(k-1)*F(k)*F(k+1),
A363753: (-1)^k*F(k-1)*F(k)*F(k+1), A163198: F(2k)^3, A163200: F(2k+1)^3,
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
A363754: F(2k-1)*F(2k)*F(2k+1).

Programs

  • Mathematica
    LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]

Formula

a(n) = ((-1)^n*(F(n+1)^3 - F(n)^3) + F(n+2) - 2)/8.
a(n) = ((-1)^n*F(3*n+1) + 4*F(n+2) - 5)/20.
a(n) = -2*a(n-1) + 9*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5).
a(-n) = A215037(n-3).
G.f.: x^2/((1 - x)*(1 + 4*x - x^2)*(1 - x - x^2)).
20*a(n) = (-1)^n*A033887(n) + 4*A000045(n+2) - 5. - R. J. Mathar, Jun 27 2023

A292278 a(n) = (Fibonacci(3*n-1) + 1)/2 for n >= 1.

Original entry on oeis.org

1, 3, 11, 45, 189, 799, 3383, 14329, 60697, 257115, 1089155, 4613733, 19544085, 82790071, 350704367, 1485607537, 6293134513, 26658145587, 112925716859, 478361013021, 2026369768941, 8583840088783, 36361730124071, 154030760585065, 652484772464329
Offset: 1

Views

Author

Vincenzo Librandi, Sep 13 2017

Keywords

Comments

Problem B-1211 proposed by Hideyuki Ohtsuka (see Links section): For n >= 1, prove that Fibonacci(n-1)^3 + Sum_{k=1..n} Fibonacci(k)^3 = (Fibonacci(3*n-1) + 1)/2.
Proof. Let F(n-1)^3 = (F(3*n-3) + 3*(-1)^n*F(n-1))/5 (see Ralf Stephan's formula in A056570) and Sum_{k=1..n} F(k)^3 = (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 (see Benjamin & Timothy's formula in A005968), where F=A000045, n>0. Therefore, (F(3*n-3) + 3*(-1)^n*F(n-1))/5 + (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 = (2*F(3*n-3) + F(3*n+2) + 5)/10 = (2*(F(3*n-1) - F(3*n-2)) + (3*F(3*n-1) + 2*F(3*n-2)) + 5)/10 = (5*F(3*n-1) + 5)/10 = a(n). - Bruno Berselli, Sep 14 2017

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n-1)+1)/2: n in [1..30]];
    
  • Mathematica
    Table[(Fibonacci[3 n - 1] + 1) / 2, {n, 40}]
    LinearRecurrence[{5,-3,-1},{1,3,11},30] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a(n) = (fibonacci(3*n-1)+1)/2; \\ Altug Alkan, Sep 13 2017

Formula

G.f.: x*(1 - 2*x - x^2)/((1 - x)*(1 - 4*x -x^2)).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3).

Extensions

Edited by Bruno Berselli, Sep 14 2017

A079716 a(n) = 2*(F(1)^3+F(2)^3+F(3)^3+...+F(p)^3)/(F(1)+F(2)+F(3)+...+F(p)) where p is the n-th prime and F(k) denotes the k-th Fibonacci number.

Original entry on oeis.org

2, 5, 27, 174, 7955, 54378, 2551019, 17482358, 821234595, 264431660859, 1812440734590, 583600131432954, 27416783156825867, 187917427075527110, 8828119011157298499, 2842626904464482727003, 915317035112361317429843, 6273676290103919245031562
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2003

Keywords

Crossrefs

Formula

a(n) = 2*A005968(prime(n)) / A000071(prime(n)+2) [corrected by Sean A. Irvine, Aug 25 2025].
Previous Showing 11-15 of 15 results.