A128697
Sum of the eighth powers of the first n Fibonacci numbers.
Original entry on oeis.org
0, 1, 2, 258, 6819, 397444, 17174660, 832905381, 38655764742, 1824449669638, 85558387560263, 4022147193262344, 188906406088298760, 8875457294194960201, 416941824416535235082, 19587673124144635235082, 920198619736386114829803, 43229838526402491973562764, 2030880577900713476799525260, 95408186647695095521364177901, 4482153365649947417785489568526
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (35,680,-5355,-7735,24752,-7735,-5355,680,35,-1).
-
[(&+[Fibonacci(k)^8: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
-
a[ n_Integer ] := If[ n >= 0, Sum[ Fibonacci[ k ]^8, {k, 1, n} ], Sum[ -Fibonacci[ -k ]^8, {k, 1, -n - 1} ] ]
Accumulate[Fibonacci[Range[0,20]]^8] (* Harvey P. Dale, Oct 26 2011 *)
-
a(n) = sum(k=1, n, fibonacci(k)^8); \\ Michel Marcus, Dec 10 2016
A163200
Sum of the cubes of the first n odd-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 9, 134, 2331, 41635, 746604, 13395941, 240376941, 4313380114, 77400441855, 1388894512391, 24922700621784, 447219716262409, 8025032191009041, 144003359719040030, 2584035442744223139, 46368634609657371691, 832051387531037141316, 14930556340948876798829
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- K. Subba Rao, Some properties of Fibonacci numbers, Amer. Math. Monthly, 60(10):680-684, Dec. 1953. See page 682.
- Index entries for linear recurrences with constant coefficients, signature (21,-56,21,-1).
-
[(1/4)*Fibonacci(2*n)*(Fibonacci(2*n)^2+3): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k-1]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
LinearRecurrence[{21,-56,21,-1}, {0,1,9,134}, 50] (* or *) Table[(1/20)*(Fibonacci[6*n] + 12*Fibonacci[2*n]),{n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
Join[{0},Accumulate[Fibonacci[Range[1,41,2]]^3]] (* Harvey P. Dale, Jul 20 2021 *)
-
concat([0],Vec(x*(1 - 12*x + x^2)/((1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
A363753
a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).
Original entry on oeis.org
0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0
Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
-
LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]
A292278
a(n) = (Fibonacci(3*n-1) + 1)/2 for n >= 1.
Original entry on oeis.org
1, 3, 11, 45, 189, 799, 3383, 14329, 60697, 257115, 1089155, 4613733, 19544085, 82790071, 350704367, 1485607537, 6293134513, 26658145587, 112925716859, 478361013021, 2026369768941, 8583840088783, 36361730124071, 154030760585065, 652484772464329
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Hideyuki Ohtsuka, Problem B-1211, The Fibonacci Quarterly, Volume 55, Number 3 (August 2017), p. 276 (see Comments section).
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
-
[(Fibonacci(3*n-1)+1)/2: n in [1..30]];
-
Table[(Fibonacci[3 n - 1] + 1) / 2, {n, 40}]
LinearRecurrence[{5,-3,-1},{1,3,11},30] (* Harvey P. Dale, Mar 06 2024 *)
-
a(n) = (fibonacci(3*n-1)+1)/2; \\ Altug Alkan, Sep 13 2017
A079716
a(n) = 2*(F(1)^3+F(2)^3+F(3)^3+...+F(p)^3)/(F(1)+F(2)+F(3)+...+F(p)) where p is the n-th prime and F(k) denotes the k-th Fibonacci number.
Original entry on oeis.org
2, 5, 27, 174, 7955, 54378, 2551019, 17482358, 821234595, 264431660859, 1812440734590, 583600131432954, 27416783156825867, 187917427075527110, 8828119011157298499, 2842626904464482727003, 915317035112361317429843, 6273676290103919245031562
Offset: 1
Comments