cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A015196 Sum of Gaussian binomial coefficients for q=10.

Original entry on oeis.org

1, 2, 13, 224, 13435, 2266646, 1348019857, 2269339773068, 13484735901526279, 226960944509263279490, 13485189809930561625032701, 2269636415245291711513986785912, 1348523520252401463276762566348539123
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Row sums of triangle A022174.

Programs

  • Mathematica
    Total/@Table[QBinomial[n, m, 10], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
    Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(10^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)

Formula

a(n) = 2*a(n-1)+(10^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 10^(n^2/4), where c = EllipticTheta[3,0,1/10]/QPochhammer[1/10,1/10] = 1.348524024616... if n is even and c = EllipticTheta[2,0,1/10]/QPochhammer[1/10,1/10] = 1.2763120346269... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A198260 Runs of 1s in binary strings corresponding to subgroups of nimber addition.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 2, 2, 4, 3, 2, 3, 4, 2, 1, 2, 2, 2, 2, 4, 3, 2, 4, 4, 2, 2, 2, 4, 4, 4, 3, 2, 4, 4, 4, 4, 2, 4, 3, 2, 4, 4, 4, 4, 4, 8, 7, 3, 5, 6, 2, 3, 4, 4, 4, 4, 6, 5, 4, 7, 8, 2, 3, 4, 2, 1, 2, 2, 2, 2, 4, 3, 2, 4, 4, 2, 2, 2, 4, 4, 4, 3, 2, 4, 4, 4, 4, 2, 4, 3, 2, 4, 4
Offset: 0

Views

Author

Tilman Piesk, Oct 22 2011

Keywords

Comments

Counts the runs of consecutive ones in the binary representation of A190939. All positive integers appear in this sequence.
The first A006116(n) entries contain all integers from 1 to 2^(n-1). E.g. the first 67 entries contain all integers from 1 to 8. How often each integer appears is counted by the triangle A227961.

Crossrefs

Cf. A190939 (subgroups of nimber addition interpreted as binary numbers).
Cf. A069010 (runs of 1s).
Cf. A227961 (corresponding triangle).

Formula

a(n) = A069010(A190939(n)).

Extensions

Changed offset to 0 as in A190939 by Tilman Piesk, Jan 25 2012
Significant edit by Tilman Piesk, Aug 01 2013

A227960 Big equivalence classes (A227723) related to subgroups of nimber addition (A190939).

Original entry on oeis.org

1, 3, 6, 15, 24, 60, 105, 255, 384, 960, 1632, 1680, 4080, 15555, 27030, 65535, 98304, 245760, 417792, 430080, 1044480, 1582080, 3947520, 3982080, 6908160, 6919680, 16776960, 106991625, 267448335, 1019462460, 1771476585, 4294967295
Offset: 0

Views

Author

Tilman Piesk, Aug 01 2013

Keywords

Comments

A subsequence of A227723, showing all the big equivalence classes that contain Boolean functions related to subgroups of nimber addition (A190939).
Forms a triangle with row lengths A034343 = 1, 1, 2, 4, 8, 16, 36, 80...:
1,
3,
6, 15,
24, 60, 105, 255,
384, 960, 1632, 1680, 4080, 15555, 27030, 65535...
The left column a( 1,2,4,8,16,32,68,148... ) = a( A076766 ) = 3 ,6, 24, 384, 98304... is probably A001146 * 3/2, which is also A006017( A000079 ).
The first A076766(n) entries correspond to the first A006116(n) entries of A190939. (The first 148 here, for n = 7, correspond to the first 29212 there.) The entries of A190939 can be generated from this sequence.
Among the first A076766(n) entries are A076831(n;0...n) with weight 2^0...2^n. (Among the first 148 are 1, 7, 23, 43, 43, 23, 7, 1 with weights 1, 2, 4, 8, 16, 32, 64, 128.)
a(n) appears to be divisible by 3 for n>0, and the odd part of a(n) is almost always squarefree. - Ralf Stephan, Aug 02 2013

Crossrefs

Subsequence of A227723 (all becs). All entries are also in A227963 (all sona-secs). Neither shares the property of divisibility by 3.
The prime factors contain many prime factors of Fermat numbers (A023394).

Formula

a( A076766 - 1 ) = A001146 - 1 = A051179.
a( A076766 ) = A001146 * 3/2 (probably).

A228465 Recurrence a(n) = a(n-1) + 2^n*a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 9, 25, 313, 1913, 41977, 531705, 22023929, 566489849, 45671496441, 2366013917945, 376506912762617, 39141278944373497, 12376519796349807353, 2577539376694811306745, 1624792742123856760679161, 677311275106408471956040441, 852536648457739021814912002809
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2013

Keywords

Comments

Generally (if p>0, q>1), recurrence a(n) = b*a(n-1) + (p*q^n+d)*a(n-2), a(n) is asymptotic to c*q^(n^2/4)*(p*q)^(n/2), where c is for fixed parameters b, p, d, q, a(0), a(1) constant, independent on n.

Crossrefs

Programs

  • Magma
    [n le 2 select (n-1) else Self(n-1)+Self(n-2)*2^(n-1): n in [1..20]]; // Vincenzo Librandi, Aug 23 2013
    
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1]+2^n*a[n-2],a[0]==0,a[1]==1},a,{n,0,20}]
    (* Alternative: *)
    a[n_] := Sum[2^(k^2-1) QBinomial[n - k , k - 1, 2], {k, 1, n}];
    Table[a[n], {n, 0, 19}] (* After Vladimir Kruchinin. Peter Luschny, Jan 20 2020 *)
  • SageMath
    def a(n):
        return sum(2^(k^2 - 1)*q_binomial(n-k , k-1, 2) for k in (1..n))
    print([a(n) for n in range(20)]) # Peter Luschny, Jan 20 2020

Formula

a(n) ~ c * 2^(n^2/4 + n/2), where c = 0.548441579870783378573455400152590154... if n is even and c = 0.800417244834941368929416800341853541... if n is odd.
a(n) = Sum_{k=1..floor(n/2+1/2)} qbinomial(n-k,k-1)*2^(k^2-1), where q-binomial is triangle A022166, that is, with q=2. - Vladimir Kruchinin, Jan 20 2020

A015197 Sum of Gaussian binomial coefficients for q=11.

Original entry on oeis.org

1, 2, 14, 268, 19156, 3961832, 3092997464, 7024809092848, 60287817008722576, 1505950784990730735392, 142158530752430089391520224, 39060769254069395008311334483648, 40559566021977397260316290099710383936
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Programs

  • Mathematica
    Total/@Table[QBinomial[n, m, 11], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
    Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(11^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)

Formula

a(n) = 2*a(n-1)+(11^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 11^(n^2/4), where c = EllipticTheta[3,0,1/11]/QPochhammer[1/11,1/11] = 1.312069129398... if n is even and c = EllipticTheta[2,0,1/11]/QPochhammer[1/11,1/11] = 1.2291712170215... if n is odd. - Vaclav Kotesovec, Aug 21 2013

A135934 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - Fibonacci(k)*x).

Original entry on oeis.org

1, 1, 2, 4, 9, 24, 77, 299, 1419, 8312, 60452, 547939, 6213566, 88468601, 1585646789, 35846274127, 1023893974778, 37005881297226, 1694206791508891, 98335493373334998, 7241161595237290969, 676871453643079089963, 80351261743964014059133, 12117563014768206457325416
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2007

Keywords

Comments

After the first term, row sums of triangle A111669. - Emanuele Munarini, Dec 05 2017

Examples

			A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-x)) + x^3/((1-x)*(1-x)*(1-2*x)) +
x^4/((1-x)*(1-x)*(1-2*x)(1-3*x)) + x^5/((1-x)*(1-x)*(1-2*x)*(1-3*x)*(1-5*x)) + x^6/((1-x)*(1-x)*(1-2*x)*(1-3*x)*(1-5*x)*(1-8*x)) +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          (<<0|1>, <1|1>>^m)[1, 2]*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2021
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1,
       MatrixPower[{{0, 1}, {1, 1}}, m][[1, 2]]*b[n-1, m]+b[n-1, m+1]];
    a[n_] :=  b[n, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 07 2022, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-fibonacci(j)*x+x*O(x^n))), n)}

Formula

G.f.: (1 - G(0) )/(1-x) where G(k) = 1 - 1/(1-Fibonacci(k)*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 17 2013
G.f.: 1/(x*(1-x)*G(0)) - 1/x where G(k) = 1 - x/(x - 1/(1 + 1/(x*Fibonacci(k)-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 13 2013

A225609 Recurrence a(n) = 2^n*a(n-1) + a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 33, 532, 17057, 1092180, 139816097, 35794013012, 18326674478241, 18766550459731796, 38433913668205196449, 157425329151518944386900, 1289628334843156860622681249, 21129270795495611155960953970516, 692363946716428521201685400328549537
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2^n*a[n-1]+a[n-2],a[0]==0,a[1]==1},a,{n,0,15}]

Formula

a(n) ~ c * 2^(n^2/2 + n/2), where c = 0.52087674149344124670486211129137...

A228467 Recurrence a(n) = 2^n*a(n-1) - a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 31, 492, 15713, 1005140, 128642207, 32931399852, 16860748082017, 17265373104585556, 35359467257443136671, 144832360621113983218860, 1186466662848698493085764449, 19439069659280715489603181513556, 636979433408843822314618558750438559
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2^n*a[n-1]-a[n-2],a[0]==0,a[1]==1},a,{n,0,15}]
    nxt[{n_,a_,b_}]:={n+1,b,b*2^(n+1)-a}; NestList[nxt,{1,0,1},20][[All,2]] (* Harvey P. Dale, Jul 02 2022 *)

Formula

a(n) ~ c * 2^(n^2/2 + n/2), where c = 0.4792100640621967581293535977698228585...

A381058 Irregular triangular array read by rows. Let S_n be the set of labeled graphs G on [n] with 2-colored nodes where black nodes are only connected to white nodes and vice versa. Orient the edges in each such graph G from black to white. T(n,k) is the number of graphs in S_n containing exactly k descents, n>=0, 0<=k<=A002620(n).

Original entry on oeis.org

1, 2, 5, 1, 16, 8, 2, 67, 56, 30, 8, 1, 374, 436, 358, 188, 68, 16, 2, 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1, 29212, 50460, 66976, 66092, 52412, 34280, 18630, 8376, 3072, 892, 194, 28, 2, 417199, 811790, 1246486, 1471358, 1436404, 1195166, 859650, 537750, 292880, 138280, 56048, 19168, 5382, 1188, 192, 20, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A006116(n).

Examples

			    1;
    2;
    5,    1;
   16,    8,    2;
   67,   56,   30,    8,    1;
  374,  436,  358,  188,   68,  16,   2;
 2825, 4143, 4508, 3460, 2032, 924, 320, 80, 13, 1;
 ...
		

Crossrefs

Programs

  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1+y)^Binomial[n,2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,  Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z] /. y -> 1] // Grid

A174526 Triangle t(n,m) = 2*A022166(n,m)-binomial(n,m), read by rows, 0<=m<=n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 64, 26, 1, 1, 57, 300, 300, 57, 1, 1, 120, 1287, 2770, 1287, 120, 1, 1, 247, 5313, 23587, 23587, 5313, 247, 1, 1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1, 1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 21 2010

Keywords

Comments

Row sums are 1, 2, 6, 24, 118, 716, 5586, 58296, 834142, 16566404, 459510186,... = 2*A006116(n)-2^n.
The column m=1 might be A000295. - R. J. Mathar, Nov 14 2011

Examples

			1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 26, 64, 26, 1;
1, 57, 300, 300, 57, 1;
1, 120, 1287, 2770, 1287, 120, 1;
1, 247, 5313, 23587, 23587, 5313, 247, 1;
1, 502, 21562, 194254, 401504, 194254, 21562, 502, 1;
1, 1013, 86834, 1575986, 6619368, 6619368, 1575986, 86834, 1013, 1;
1, 2036, 348457, 12695310, 107487764, 218443050, 107487764, 12695310, 348457, 2036, 1;
		

Crossrefs

Cf. A008292.

Programs

  • Maple
    A174526 := proc(n,k)
       2*A022166(n,k)-binomial(n,k) ;
    end proc:
    seq(seq(A174526(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
  • Mathematica
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
    (* second program: *)
    t[n_, m_] := 2 QBinomial[n, m, 2] - Binomial[n, m]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
Previous Showing 11-20 of 26 results. Next