cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A351761 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2022

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  0,    1,     2,     3,      4,      5, ...
  0,    4,    12,    24,     40,     60, ...
  0,   21,   102,   279,    588,   1065, ...
  0,  148,  1160,  4332,  11536,  25220, ...
  0, 1305, 16490, 84075, 282900, 746525, ...
		

Crossrefs

Columns k=0..3 give A000007, A006153, A351762, A351763.
Main diagonal gives A351765.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
    
  • PARI
    T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));

Formula

E.g.f. of column k: 1/(1 - k*x*exp(x)).
T(0,k) = 1 and T(n,k) = k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.

A358738 Expansion of Sum_{k>=0} k! * ( x/(1 - k*x) )^k.

Original entry on oeis.org

1, 1, 3, 15, 103, 893, 9341, 114355, 1603155, 25318137, 444689497, 8597568671, 181430298479, 4149361409077, 102229328244837, 2699254206069387, 76038064580742091, 2276259442660623857, 72160287650141753777, 2414950992007231422007
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[k! * (x/(1 - k*x))^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k!*k^(n-k)*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k! * k^(n-k) * binomial(n-1,k-1) for n > 0.
a(n) ~ n! / ((1 + LambertW(1))^2 * LambertW(1)^n). - Vaclav Kotesovec, Feb 18 2023

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022

A336952 E.g.f.: 1 / (1 - x * exp(4*x)).

Original entry on oeis.org

1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020

Formula

a(n) = n! * Sum_{k=0..n} (4 * (n-k))^k / k!.
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k * 4^(k-1) * a(n-k).
a(n) ~ n! * (4/LambertW(4))^n / (1 + LambertW(4)). - Vaclav Kotesovec, Aug 09 2021

A346893 Expansion of e.g.f. 1 / (1 - x^5 * exp(x) / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 504, 6006, 67320, 577863, 4038034, 24975951, 165481680, 1553590220, 19495772856, 249507077436, 2910465717648, 31103684847837, 326286335505438, 3766644374319673, 51399738264984648, 785038533451101930
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=5 of A351703.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 - x^5 Exp[x]/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^5*exp(x)/5!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\5, k^(n-5*k)/(120^k*(n-5*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,5) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(3/5)*3^(1/5)/5^(4/5))) * 5^(n+1) * LambertW(2^(3/5)*3^(1/5)/5^(4/5))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/5)} k^(n-5*k)/(120^k * (n-5*k)!). - Seiichi Manyama, May 13 2022

A358081 Expansion of e.g.f. 1/(1 - x^3 * exp(x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 840, 10290, 80976, 847224, 13306320, 190271070, 2677088040, 46082426676, 874515884424, 16582066303530, 336875275380000, 7539189088358640, 176554878235711776, 4295134487197296054, 111114287924643309240, 3036073975138066955820
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1-x^3 Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/(n - 3*k)!.
a(n) ~ n! / ((1 + LambertW(1/3)) * 3^(n+1) * LambertW(1/3)^n). - Vaclav Kotesovec, Oct 30 2022

A364981 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^3).

Original entry on oeis.org

1, 1, 4, 39, 580, 11685, 298566, 9248701, 336886936, 14112113049, 668422303210, 35325208755441, 2060811941835780, 131547166492534117, 9120279070776381886, 682489450793082237285, 54828316394224735284016, 4706545644403274325580593
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[k^(n-k) * Binomial[3*n-2*k+1,k] / ((3*n-2*k+1)*(n-k)!), {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*n-2*k+1, k)/((3*n-2*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3*n-2*k+1,k)/( (3*n-2*k+1)*(n-k)! ).
a(n) ~ sqrt((1 + r*s^3)/(12*s + 9*r*s^4)) * n^(n-1) / (exp(n) * r^(n + 1/2)), where r = 0.1811100305436879929789759231994897963241226689807... and s = 1.522012903517407628213363540403002787906223513104... are real roots of the system of equations 1 + exp(r*s^3)*r*s = s, 3*r*s^3*(s-1) = 1. - Vaclav Kotesovec, Nov 18 2023

A380050 E.g.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*exp(x)*A(x) ).

Original entry on oeis.org

1, 1, 3, 9, 25, 25, -429, -4151, -8175, 320625, 5241475, 23329801, -705579159, -18521117303, -150119840493, 3366485315145, 138253031778721, 1780881865542625, -28047359274759549, -1854674541474191351, -34985197604145203655, 332608115115937927161
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(asinh(x*exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(k/2+1/2, k)/((k+1)*(n-k)!));

Formula

E.g.f.: exp( arcsinh(x*exp(x)) ).
E.g.f.: x*exp(x) + sqrt(1 + x^2*exp(2*x)).
a(n) = n! * Sum_{k=0..n} 2^k * k^(n-k) * binomial(k/2+1/2,k)/( (k+1)*(n-k)! ).

A380051 E.g.f. A(x) satisfies A(x) = ( 1 + 3*x*exp(x)*A(x) )^(1/3).

Original entry on oeis.org

1, 1, 2, 1, -12, -15, 526, 1617, -49608, -302111, 8126010, 85724001, -2020009628, -34232466255, 696686324166, 18267485751985, -310973114236944, -12533263924965183, 168118610439268594, 10727427541319225793, -100693940482485604260, -11178369799980253348079
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(k/3+1/3, k)/((k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(k/3+1/3,k)/( (k+1)*(n-k)! ).

A199673 Number of ways to form k labeled groups, each with a distinct leader, using n people. Triangle T(n,k) = n!*k^(n-k)/(n-k)! for 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 12, 6, 4, 48, 72, 24, 5, 160, 540, 480, 120, 6, 480, 3240, 5760, 3600, 720, 7, 1344, 17010, 53760, 63000, 30240, 5040, 8, 3584, 81648, 430080, 840000, 725760, 282240, 40320, 9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880
Offset: 1

Views

Author

Dennis P. Walsh, Nov 08 2011

Keywords

Comments

T(n,1)=n since there are n choices for the leader of the single group. Also, T(n,n)=n! since each of the n groups consist solely of a leader and there are n! ways to assign the n people to the n labeled groups.
In general, T(n,k) = n!*k^(n-k)/(n-k)! since there are n!/(n-k)! ways to assign leaders to the k labeled groups and there are k^(n-k) ways to map the remaining (n-k) people to the k groups.
T(n,k) is the number of functions of [n] to an arbitrary k-subset of [n], where each of the k target values is used at least once.
The number of ways to distribute n different toys among k girls and k boys to that each girl gets exactly one toy. - Dennis P. Walsh, Sep 10 2012

Examples

			T(3,2)=12 since there are 12 ways to form group 1 and group 2, both with leaders, using people p1, p2, and p3, as illustrated below. The leader will be denoted Lj if person pj is designated the leader of the group.
Group 1   Group 2
{L1,p2}   {L3}
{L1,p3}   {L2}
{L1}      {L2,p3}
{L1}      {p2,L3}
{L2,p1}   {L3}
{L2,p3}   {L1}
{L2}      {L1,p3}
{L2}      {p1,L3}
{L3,p2}   {L1}
{L3,p1}   {L2}
{L3}      {L1,p2}
{L3}      {p1,L2}
First rows of triangle T(n,k):
  1;
  2,    2;
  3,   12,      6;
  4,   48,     72,      24;
  5,  160,    540,     480,     120;
  6,  480,   3240,    5760,    3600,      720;
  7, 1344,  17010,   53760,   63000,    30240,    5040;
  8, 3584,  81648,  430080,  840000,   725760,  282240,   40320;
  9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880;
		

Programs

  • Magma
    [Factorial(n)*k^(n-k)/Factorial(n-k): k in [1..n], n in [1..9]];  // Bruno Berselli, Nov 09 2011
    
  • Maple
    seq(seq(n!*k^(n-k)/(n-k)!, k=1..n), n=1..9);
  • Mathematica
    nn = 10; a = y x Exp[x]; f[list_] := Select[list, # > 0 &]; Drop[Map[f, Range[0, nn]! CoefficientList[Series[1/(1 - a) , {x, 0, nn}], {x, y}]], 1] // Flatten  (* Geoffrey Critzer, Jan 21 2012 *)
  • PARI
    T(n,k)=n!*k^(n-k)/(n-k)!;
    /* print triangle: */
    for (n=1, 15, for (k=1,n, print1(T(n,k),", ")); print() );
    /* Joerg Arndt, Sep 21 2012 */

Formula

T(n,k) = n!*k^(n-k)/(n-k)! = k!*k^(n-k)*binomial(n,k) for 1 <= k <= n.
E.g.f.: (x*e^x)^k,for fixed k.
T(n,k1+k2) = Sum_{j=0..n} binomial(n,j)*T(j,k1)*T(n-j,k2).
T(n,1) = A000027(n);
T(n,2) = A001815(n);
T(n,3) = A052791(n);
Sum_{k=1..n} T(n,k) = A006153(n).
T(n,n) = A000142(n) = n!. - Dennis P. Walsh, Sep 10 2012
Previous Showing 31-40 of 81 results. Next