A351761
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 4, 12, 24, 40, 60, ...
0, 21, 102, 279, 588, 1065, ...
0, 148, 1160, 4332, 11536, 25220, ...
0, 1305, 16490, 84075, 282900, 746525, ...
-
T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
-
T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
A358738
Expansion of Sum_{k>=0} k! * ( x/(1 - k*x) )^k.
Original entry on oeis.org
1, 1, 3, 15, 103, 893, 9341, 114355, 1603155, 25318137, 444689497, 8597568671, 181430298479, 4149361409077, 102229328244837, 2699254206069387, 76038064580742091, 2276259442660623857, 72160287650141753777, 2414950992007231422007
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[k! * (x/(1 - k*x))^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1-k*x))^k))
-
a(n) = if(n==0, 1, sum(k=1, n, k!*k^(n-k)*binomial(n-1, k-1)));
A332408
a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022
A336952
E.g.f.: 1 / (1 - x * exp(4*x)).
Original entry on oeis.org
1, 1, 10, 102, 1336, 22200, 443664, 10334128, 275060608, 8236914048, 274069953280, 10031110907136, 400520747437056, 17324601073921024, 807023462798608384, 40278407730378332160, 2144307919689898491904, 121291661335680615284736, 7264376142168665821741056
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[n! Sum[(4 (n - k))^k/k!, {k, 0, n}], {n, 1, 18}]]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
seq(n)={ Vec(serlaplace(1 / (1 - x*exp(4*x + O(x^n))))) } \\ Andrew Howroyd, Aug 08 2020
A346893
Expansion of e.g.f. 1 / (1 - x^5 * exp(x) / 5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 504, 6006, 67320, 577863, 4038034, 24975951, 165481680, 1553590220, 19495772856, 249507077436, 2910465717648, 31103684847837, 326286335505438, 3766644374319673, 51399738264984648, 785038533451101930
Offset: 0
-
nmax = 25; CoefficientList[Series[1/(1 - x^5 Exp[x]/5!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^5*exp(x)/5!))) \\ Michel Marcus, Aug 06 2021
-
a(n) = n!*sum(k=0, n\5, k^(n-5*k)/(120^k*(n-5*k)!)); \\ Seiichi Manyama, May 13 2022
A358081
Expansion of e.g.f. 1/(1 - x^3 * exp(x)).
Original entry on oeis.org
1, 0, 0, 6, 24, 60, 840, 10290, 80976, 847224, 13306320, 190271070, 2677088040, 46082426676, 874515884424, 16582066303530, 336875275380000, 7539189088358640, 176554878235711776, 4295134487197296054, 111114287924643309240, 3036073975138066955820
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-x^3 Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*exp(x))))
-
a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(n-3*k)!);
A364981
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^3).
Original entry on oeis.org
1, 1, 4, 39, 580, 11685, 298566, 9248701, 336886936, 14112113049, 668422303210, 35325208755441, 2060811941835780, 131547166492534117, 9120279070776381886, 682489450793082237285, 54828316394224735284016, 4706545644403274325580593
Offset: 0
-
Join[{1}, Table[n! * Sum[k^(n-k) * Binomial[3*n-2*k+1,k] / ((3*n-2*k+1)*(n-k)!), {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*n-2*k+1, k)/((3*n-2*k+1)*(n-k)!));
A380050
E.g.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*exp(x)*A(x) ).
Original entry on oeis.org
1, 1, 3, 9, 25, 25, -429, -4151, -8175, 320625, 5241475, 23329801, -705579159, -18521117303, -150119840493, 3366485315145, 138253031778721, 1780881865542625, -28047359274759549, -1854674541474191351, -34985197604145203655, 332608115115937927161
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(asinh(x*exp(x)))))
-
a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(k/2+1/2, k)/((k+1)*(n-k)!));
A380051
E.g.f. A(x) satisfies A(x) = ( 1 + 3*x*exp(x)*A(x) )^(1/3).
Original entry on oeis.org
1, 1, 2, 1, -12, -15, 526, 1617, -49608, -302111, 8126010, 85724001, -2020009628, -34232466255, 696686324166, 18267485751985, -310973114236944, -12533263924965183, 168118610439268594, 10727427541319225793, -100693940482485604260, -11178369799980253348079
Offset: 0
A199673
Number of ways to form k labeled groups, each with a distinct leader, using n people. Triangle T(n,k) = n!*k^(n-k)/(n-k)! for 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 12, 6, 4, 48, 72, 24, 5, 160, 540, 480, 120, 6, 480, 3240, 5760, 3600, 720, 7, 1344, 17010, 53760, 63000, 30240, 5040, 8, 3584, 81648, 430080, 840000, 725760, 282240, 40320, 9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880
Offset: 1
T(3,2)=12 since there are 12 ways to form group 1 and group 2, both with leaders, using people p1, p2, and p3, as illustrated below. The leader will be denoted Lj if person pj is designated the leader of the group.
Group 1 Group 2
{L1,p2} {L3}
{L1,p3} {L2}
{L1} {L2,p3}
{L1} {p2,L3}
{L2,p1} {L3}
{L2,p3} {L1}
{L2} {L1,p3}
{L2} {p1,L3}
{L3,p2} {L1}
{L3,p1} {L2}
{L3} {L1,p2}
{L3} {p1,L2}
First rows of triangle T(n,k):
1;
2, 2;
3, 12, 6;
4, 48, 72, 24;
5, 160, 540, 480, 120;
6, 480, 3240, 5760, 3600, 720;
7, 1344, 17010, 53760, 63000, 30240, 5040;
8, 3584, 81648, 430080, 840000, 725760, 282240, 40320;
9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880;
-
[Factorial(n)*k^(n-k)/Factorial(n-k): k in [1..n], n in [1..9]]; // Bruno Berselli, Nov 09 2011
-
seq(seq(n!*k^(n-k)/(n-k)!, k=1..n), n=1..9);
-
nn = 10; a = y x Exp[x]; f[list_] := Select[list, # > 0 &]; Drop[Map[f, Range[0, nn]! CoefficientList[Series[1/(1 - a) , {x, 0, nn}], {x, y}]], 1] // Flatten (* Geoffrey Critzer, Jan 21 2012 *)
-
T(n,k)=n!*k^(n-k)/(n-k)!;
/* print triangle: */
for (n=1, 15, for (k=1,n, print1(T(n,k),", ")); print() );
/* Joerg Arndt, Sep 21 2012 */
Comments