cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 146 results. Next

A053029 Numbers with 4 zeros in Fibonacci numbers mod m.

Original entry on oeis.org

5, 10, 13, 17, 25, 26, 34, 37, 50, 53, 61, 65, 73, 74, 85, 89, 97, 106, 109, 113, 122, 125, 130, 137, 146, 149, 157, 169, 170, 173, 178, 185, 193, 194, 197, 218, 221, 226, 233, 250, 257, 265, 269, 274, 277, 289, 293, 298, 305, 313, 314, 317, 325, 337, 338, 346
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is twice such an odd number.
A001176(a(n)) = A128924(a(n),1) = 4. - Reinhard Zumkeller, Jan 17 2014

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | this seq | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053029 n = a053029_list !! (n-1)
    a053029_list = filter ((== 4) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 17 2014

A053030 Numbers with 2 zeros in Fibonacci numbers mod m.

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 14, 15, 16, 18, 20, 21, 23, 24, 27, 28, 30, 32, 33, 35, 36, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 63, 64, 66, 67, 68, 69, 70, 72, 75, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 103, 104
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

m is on this list iff m does not have 1 or 4 zeros in the Fibonacci sequence modulo m.
A001176(a(n)) = A128924(a(n),1) = 2. - Reinhard Zumkeller, Jan 17 2014

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | this seq | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053030 n = a053030_list !! (n-1)
    a053030_list = filter ((== 2) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 17 2014

A053031 Numbers with 1 zero in Fibonacci numbers mod m.

Original entry on oeis.org

1, 2, 4, 11, 19, 22, 29, 31, 38, 44, 58, 59, 62, 71, 76, 79, 101, 116, 118, 121, 124, 131, 139, 142, 151, 158, 179, 181, 191, 199, 202, 209, 211, 229, 236, 239, 242, 251, 262, 271, 278, 284, 302, 311, 316, 319, 331, 341, 349, 358, 359, 361, 362, 379, 382, 398
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is 2 or 4 times such an odd number.
A001176(a(n)) = A128924(a(n),1) = 1. - Reinhard Zumkeller, Jan 16 2014
Also numbers n such that A001175(n) = A001177(n). - Daniel Suteu, Aug 08 2018

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | this seq | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053031 n = a053031_list !! (n-1)
    a053031_list = filter ((== 1) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 16 2014
    
  • Mathematica
    With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* Michael De Vlieger, Aug 08 2018 *)
  • PARI
    entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1],for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<Charles R Greathouse IV, Dec 14 2016

A059317 Pascal's "rhombus" (actually a triangle T(n,k), n >= 0, 0<=k<=2n) read by rows: each entry is sum of 3 terms above it in previous row and one term above it two rows back.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 8, 9, 8, 3, 1, 1, 4, 13, 22, 29, 22, 13, 4, 1, 1, 5, 19, 42, 72, 82, 72, 42, 19, 5, 1, 1, 6, 26, 70, 146, 218, 255, 218, 146, 70, 26, 6, 1, 1, 7, 34, 107, 261, 476, 691, 773, 691, 476, 261, 107, 34, 7, 1, 1, 8, 43, 154, 428, 914, 1574, 2158
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2001

Keywords

Comments

The rows have lengths 1, 3, 5, 7, ...; cf. A005408.
T(n,k) is the number of paths in the right half-plane from (0,0) to (n,k-n), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: T(3,4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Row sums yield A006190. - Emeric Deutsch, Sep 03 2007
Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). The coefficients of the numerator polynomial of the rational function p(n, x + 1 + 1/x) form row n of the triangle A059317; the first three numerator polynomials are 1, 1 + x + x^2, 1 + 2*x + 4*x^2 + 2*x^3 + x^4. - Clark Kimberling, Nov 04 2013

Examples

			Triangle begins:
  1;
  1, 1, 1;
  1, 2, 4, 2, 1;
  1, 3, 8, 9, 8, 3, 1;
  ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A059318, A007318. Row sums give A006190. Central column is A059345.
Cf. also A006190, A140750.

Programs

  • Haskell
    -- import Data.List (zipWith4)
    a059317 n k = a059317_tabf !! n !! k
    a059317_row n = a059317_tabf !! n
    a059317_tabf = [1] : [1,1,1] : f [1] [1,1,1] where
       f ws vs = vs' : f vs vs' where
         vs' = zipWith4 (\r s t x -> r + s + t + x)
               (vs ++ [0,0]) ([0] ++ vs ++ [0]) ([0,0] ++ vs)
               ([0,0] ++ ws ++ [0,0])
    -- Reinhard Zumkeller, Jun 30 2012
  • Maple
    r:=proc(i,j) option remember; if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1,j)+r(i-1,j-1)+r(i-1,j+1)+r(i-2,j) else 0 fi end: seq(seq(r(i,j),j=-i+1..i-1),i=0..9); # Emeric Deutsch, Jun 06 2004
    g:=1/(1-z-z*w-z*w^2-z^2*w^2): gser:=simplify(series(g,z=0,10)): for n from 0 to 8 do P[n]:=sort(coeff(gser,z,n)) end do: for n from 0 to 8 do seq(coeff(P[n],w,k),k=0..2*n) end do; # yields sequence in triangular form; Emeric Deutsch, Sep 03 2007
  • Mathematica
    t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2]; t[n_, k_] /; n < 0 || k < 0 || k > 2n = 0; Flatten[ Table[ t[n, k], {n, 0, 8}, {k, 0, 2n}]] (* Jean-François Alcover, Feb 01 2012 *)

Formula

T(n+1, k) = T(n, k-1) + T(n, k) + T(n, k+1) + T(n-1, k).
Another definition: T(i, j) is defined for i >= 0, -infinity <= j <= infinity; T(i, j) = T(i-1, j) + T(i-1, j-1) + T(i-1, j-2) + T(i-2, j-2) for i >= 2, all j; T(0, 0) = T(1, 1) = T(1, 1) = T(1, 2) = 1; T(0, j) = 0 for j != 0; T(1, j) = 0 for j != 0, 1, 2.
G.f.: Sum_{n>=0, k=0..2*n} T(n, k)*z^n*w^k = 1/(1-z-z*w-z*w^2-z^2*w^2).
There does not seem to be a simple expression for T(n, k). [That may have been true in 2001, but it is no longer true, as the following formulas show. - N. J. A. Sloane, Jan 22 2016]
If the rows of the sequence are displayed in the shape of an isosceles triangle, then, for k>=0, columns k and -k have g.f. z^k*g^k/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007
T(i,j) = Sum_{m=0..i} Sum_{l=0..i-j-2*m} binomial(2*m+j,m)*binomial(l+j+2*m,l)*binomial(l,i-j-2*m-l) (see Ramirez link). - José Luis Ramírez Ramírez, Nov 18 2015
The e.g.f of the j-th column of the Pascal rhombus is L_j(x)=(F(x)^(j+1)*C(F(x)^2)^j)/(x*(1-2*F(x)^2*C(F(x)^2))), where F(x) and C(x) are the generating function of the Fibonacci numbers and Catalan numbers. - José Luis Ramírez Ramírez, Nov 18 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001

A112860 2 together with A053032.

Original entry on oeis.org

2, 11, 19, 29, 31, 59, 71, 79, 101, 131, 139, 151, 179, 181, 191, 199, 211, 229, 239, 251, 271, 311, 331, 349, 359, 379, 419, 431, 439, 461, 479, 491, 499, 509, 521, 541, 571, 599, 619, 631, 659, 691, 709, 719, 739, 751, 809, 811, 839, 859, 911, 919, 941, 971
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2007

Keywords

Comments

Consists of the primes that are in neither A053027 nor A053028.
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 1.
For p > 2, p is in this sequence if and only if A001175(p) == 2 (mod 4), and if and only if A001177(p) == 2 (mod 4). For a proof of the equivalence between A001176(p) = 1 and A001177(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 11, 19 (mod 20). This corresponds to case (3) for k = 3 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+-----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | this seq* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

A261580 Primes p such that A214028(p) is odd.

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 857, 877, 941, 953, 997, 1013, 1021, 1061, 1069
Offset: 1

Views

Author

Michel Marcus, Aug 25 2015

Keywords

Comments

From Jianing Song, Aug 13 2019: (Start)
Primes p with 4 zeros in a fundamental period of A000129 mod p, that is, primes p such that A214027(p) = 4. For a proof of the equivalence between A214027(p) = 4 and A214028(p) being odd, see Section 2 of my link below.
For p > 2, p is in this sequence if and only if A175181(p) == 4 (mod 8).
This sequence contains all primes congruent to 5 modulo 8. This corresponds to case (1) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 7/24 in the primes; see the end of Section 1 of my link. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 20 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Examples

			The smallest Pell number divisible by the prime 5 has index 3, which is odd, so 5 is in the sequence.
		

Crossrefs

Cf. also A175181.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | this seq | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[Mod[Simplify[((1 + Sqrt@ 2)^k - (1 - Sqrt@ 2)^k)/(2 Sqrt@ 2)], n] != 0, k++]; k]; Select[Prime@ Range@ 180, OddQ@ f@ # &] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n);
    z(n) = {k=1; while (pell(k) % n, k++); k;}
    lista(nn) = {forprime(p=2, nn, if (z(p) % 2, print1(p, ", ")););}
    
  • PARI
    forprime(p=2, 1100, if(A214027(p)==4, print1(p, ", "))) \\ Jianing Song, Aug 13 2019

A206296 Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2).

Original entry on oeis.org

1, 2, 3, 10, 63, 2750, 842751, 85558343750, 2098355820117528699, 769999781728184386440152910156250, 2359414683424785920146467280333749864720543920418139851
Offset: 0

Views

Author

Clark Kimberling, Feb 05 2012

Keywords

Comments

These are numbers matched to the Fibonacci polynomials according to the scheme explained in A206284 (see also A104244). In this case, the exponent of the k-th prime p_k in the prime factorization of a(n) indicates the coefficient of term x^(k-1) in the n-th Fibonacci polynomial. See the examples.

Examples

			n    a(n)   prime factorization    Fibonacci polynomial
------------------------------------------------------------
0       1   (empty)                F_0(x) = 0
1       2   p_1                    F_1(x) = 1
2       3   p_2                    F_2(x) = x
3      10   p_3 * p_1              F_3(x) = x^2 + 1
4      63   p_4 * p_2^2            F_4(x) = x^3 + 2x
5    2750   p_5 * p_3^3 * p_1      F_5(x) = x^4 + 3x^2 + 1
6  842751   p_6 * p_4^4 * p_2^3    F_6(x) = x^5 + 4x^3 + 3x
		

Crossrefs

Other such mappings:
polynomial sequence integer sequence
-----------------------------------------
x^n A000040
(x+1)^n A007188
n*x^(n-1) A062457
(1-x^n)/(1-x) A002110
n + (n-1)x + ... +x^n A006939
Stern polynomials A260443

Programs

  • Mathematica
    c[n_] := CoefficientList[Fibonacci[n, x], x]
    f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}]
    Table[f[n], {n, 1, 11}]  (* A206296 *)
  • Python
    from functools import reduce
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    l=[1, 2]
    for n in range(2, 11):
        l.append(a003961(l[n - 1])*l[n - 2])
    print(l) # Indranil Ghosh, Jun 21 2017

Formula

From Antti Karttunen, Jul 29 2015: (Start)
a(0) = 1, a(1) = 2, and for n >= 2, a(n) = A003961(a(n-1)) * a(n-2).
Other identities. For all n >= 0:
A001222(a(n)) = A000045(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = A000129(n). [at x=2.]
A090880(a(n)) = A006190(n). [at x=3.]
(End)

Extensions

a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by Antti Karttunen, Jul 29 2015

A309580 Primes p with 1 zero in a fundamental period of A000129 mod p.

Original entry on oeis.org

2, 7, 23, 31, 41, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 313, 353, 359, 367, 383, 409, 431, 439, 457, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 761, 809, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1129, 1151, 1201, 1223, 1231, 1279
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A214027(p) = 1.
For p > 2, p is in this sequence if and only if A175181(p) == 2 (mod 4), and if and only if A214028(p) == 2 (mod 4). For a proof of the equivalence between A214027(p) = 1 and A214028(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 7 modulo 8. This corresponds to case (3) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 7/24 in the primes; see the end of Section 1 of my link. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | this seq | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 1300, if(A214027(p)==1, print1(p, ", ")))

A309581 Primes p with 2 zeros in a fundamental period of A000129 mod p.

Original entry on oeis.org

3, 11, 17, 19, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 331, 337, 347, 379, 401, 419, 433, 443, 449, 467, 491, 499, 523, 547, 563, 571, 577, 587, 601, 617, 619, 641, 643, 659, 673, 683, 691
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A214027(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides A175181(p), and if and only if 4 divides A214028(p). For a proof of the equivalence between A214027(p) = 2 and 4 dividing A214028(p), see Section 2 of my link below.
This sequence contains all primes congruent to 3 modulo 8. This corresponds to case (2) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 5/12 in the primes; see the end of Section 1 of my link. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | this seq | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 700, if(A214027(p)==2, print1(p, ", ")))

A309583 Numbers k with 1 zero in a fundamental period of A000129 mod k.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 20, 23, 24, 28, 31, 32, 40, 41, 46, 47, 48, 49, 52, 56, 62, 64, 71, 72, 79, 80, 82, 88, 92, 94, 96, 98, 100, 103, 104, 112, 116, 120, 124, 127, 128, 140, 142, 144, 148, 151, 152, 158, 160, 161, 164, 167, 168, 176, 184, 188, 191, 192
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A214027(k) = 1.
The odd numbers k satisfy A175181(k) == 2 (mod 4).

Crossrefs

Cf. A175181.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | this seq | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 200, if(A214027(k)==1, print1(k, ", ")))
Previous Showing 51-60 of 146 results. Next