cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A217233 Expansion of (1-2*x+x^2)/(1-3*x-3*x^2+x^3).

Original entry on oeis.org

1, 1, 7, 23, 89, 329, 1231, 4591, 17137, 63953, 238679, 890759, 3324361, 12406681, 46302367, 172802783, 644908769, 2406832289, 8982420391, 33522849271, 125108976697, 466913057513, 1742543253359, 6503259955919, 24270496570321, 90578726325361
Offset: 0

Views

Author

Bruno Berselli, Sep 28 2012

Keywords

Comments

Numbers with the property a(n)^2+a(n-1)^2 = 2*(a(n)-a(n-1)-(-1)^n)^2.

Examples

			a(3)=23, a(2)=7: 23^2+7^2 = 2*(23-7-(-1)^3)^2 = 578;
a(6)=1231, a(5)=329: 1231^2+329^2 = 2*(1231-329-(-1)^6)^2 = 1623602.
		

Crossrefs

Cf. A109437 (1/(1-3*x-3*x^2+x^3)), A006253 ((1-x)/(1-3*x-3*x^2+x^3)).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+x^2)/(1-3*x-3*x^2+x^3)));
    
  • Mathematica
    CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 25}], x]
  • Maxima
    makelist(coeff(taylor((1-2*x+x^2)/(1-3*x-3*x^2+x^3), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-2*x+x^2)/(1-3*x-3*x^2+x^3)+O(x^26))
    

Formula

G.f.: (1-x)^2/((1+x)*(1-4*x+x^2)).
a(n) = (4*(-2)^n+(1-sqrt(3))^(2*n+1)+(1+sqrt(3))^(2*n+1))/(6*2^n).
a(n) = -a(-n-1) = 3*a(n-1)+3*a(n-2)-a(n-3) = 4*a(n-1)-a(n-2)+4*(-1)^n.
a(n)+a(n-1) = A052530(n) with a(-1)=-1.
a(n)-a(n-2) = A003699(n) with n>1.
Sum(a(i), i=0..n) = A006253(n).

A049507 Number of perfect matchings in graph P_{6} x P_{6} x P_{n}.

Original entry on oeis.org

1, 6728, 53786626921, 57248060375968384, 123115692449982216049513, 216388579168758145017797108072
Offset: 0

Views

Author

Keywords

Crossrefs

A060635 a(n) is the number of 2 X 1 domino tilings of the set S in the plane R^2 consisting of the union of the following two rectangles: rectangle1: |x| <= n, |y| <= 1, rectangle2: |x| <= 1, |y| <= n.

Original entry on oeis.org

2, 8, 72, 450, 3200, 21632, 149058, 1019592, 6993800, 47922050, 328499712, 2251473408, 15432082562, 105772401800, 724976569800, 4969058770242, 34058447431808, 233440040239232, 1600021920672450, 10966713178192200, 75166970919070472, 515202081704384258, 3531247605071972352
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 16 2001

Keywords

Comments

The relevant graph has rotational symmetry so the number of tilings is a square or twice a square, in this case by the formula for a(n) it is always twice a square.

Examples

			a(1) = 2 because in this case the set S is the unit square and there is one horizontal tiling and one vertical.
		

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 40 do printf(`%d,`,2*fibonacci(n)^2*fibonacci(n+1)^2) od:
  • Mathematica
    2*Times @@@ Partition[Fibonacci[Range[25]]^2, 2, 1] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    { a=1; b=0; c=1; for (n=1, 200, f=a+b; g=b+c; a=b; b=c; c=g; write("b060635.txt", n, " ", 2*f^2*g^2); ) } \\ Harry J. Smith, Jul 08 2009

Formula

a(n) = 2 * F(n)^2 * F(n+1)^2 where F(n) is the n-th Fibonacci number - sequence A000045.
G.f.: -2*x*(1-x+x^2) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Jan 30 2011
a(n) = -4*(-1)^n*A002878(n)/25 - 2/25 + 6*A049658(n)/25. - R. J. Mathar, Jan 30 2011
a(n) = 2 * A001654(n)^2 = 2 * A197424(n-2) for n>=2. - Alois P. Heinz, Jul 03 2025

Extensions

More terms from James Sellers, Apr 16 2001

A105968 a(n) = 4*a(n-1) - a(n-2) - 2*(-1)^n, a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 13, 50, 185, 692, 2581, 9634, 35953, 134180, 500765, 1868882, 6974761, 26030164, 97145893, 362553410, 1353067745, 5049717572, 18845802541, 70333492594, 262488167833, 979619178740, 3655988547125, 13644335009762, 50921351491921, 190041070957924
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

This sequence is the (type 1A) "jbasejfor" transformation of the sequence (-1, -1, -1, -1, ..) with respect to the floretion given in the program code. Under the same conditions, the jbasejfor transformation of the sequence (1, 1, 1, 1, ...) is A006253 [Number of perfect matchings (or domino tilings) in C_4 X P_n]; the jbasejfor transformation of the sequence (1, -1, 1, -1, ...) is A001075 [Chebyshev's T(n,x) polynomials evaluated at x=2]; the jbasejfor transformation of the sequence (-1, 1, -1, 1, ...) is A001353 [3*a(n)^2 + 1 is a perfect square]. In this sense, the sequences (a(n)), A006253, A001075 and A001353 form a "quartett".
Floretion Algebra Multiplication Program, FAMP Code: 4jbasejforseq[ + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e]. ForType: 1A. 1vesforseq = (-1, -1, -1, -1, ..).

Crossrefs

Programs

  • GAP
    a:=[1,4,13];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,4,13]; [n le 3 select I[n] else 3*Self(n-1) +3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify((4*ChebyshevU(n,2) -5*ChebyshevU(n-1,2) -(-1)^n)/3), n = 0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[(4*ChebyshevU[n, 2] -5*ChebyshevU[n-1, 2] -(-1)^n)/3, {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    nxt[{n_,a_,b_}]:={n+1,b,4b-a-2(-1)^(n+1)}; NestList[nxt,{1,1,4},30][[;;,2]] (* or *) LinearRecurrence[ {3,3,-1},{1,4,13},30] (* Harvey P. Dale, Apr 03 2024 *)
  • PARI
    Vec((1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, May 25 2015
    
  • SageMath
    [(4*chebyshev_U(n,2) -5*chebyshev_U(n-1,2) -(-1)^n)/3 for n in (0..30)] # G. C. Greubel, Jan 15 2020
    

Formula

G.f.: (1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)).
a(n) + a(n+1) = A054491(n+1) - A054491(n).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3). - Colin Barker, May 25 2015
a(n) = ( 4*ChebyshevU(n,2) - 5*ChebyshevU(n-1,2) - (-1)^n )/3. - G. C. Greubel, Jan 15 2020
E.g.f.: (exp(2*x)*(4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - cosh(x) + sinh(x))/3. - Stefano Spezia, Sep 19 2023

A360066 Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes, 2 X 1 X 1 dominos and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 11, 444, 13311, 422617, 13265660, 417336617, 13123557903, 412719195520, 12979269602143, 408175860119021, 12836425011761592, 403683424226081169, 12695147020245034099, 399240466722076292612, 12555423726269799691295, 394846409914451855949249
Offset: 0

Views

Author

Gerhard Kirchner, Jan 30 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 10.

Crossrefs

Programs

Formula

G.f.: (1 - 15*x - 18*x^2 - 23*x^3 + 7*x^4) / (1 - 26*x - 176*x^2 + 146*x^3 + 14*x^4 + 140*x^5 - 27*x^6).
Recurrence 1:
a(n) = 11*a(n-1) + 4*b(n-1) + 2*c(n-1) + d(n-1) + e(n-1) + 29*a(n-2) + 6*b(n-2) + c(n-2) + 2*d(n-2),
b(n) = 32*a(n-1) + 9*b(n-1) + 4*c(n-1) + 2*d(n-1) + e(n-1),
c(n) = 52*a(n-1) + 14*b(n-1) + 5*c(n-1) + 4*d(n-1) + 2*e(n-1),
d(n) = 14*a(n-1) + 3*b(n-1) + d(n-1),
e(n) = 48*a(n-1) + 11*b(n-1) + 2*c(n-1) + 2*d(n-1),
with a(n), b(n), c(n), d(n), e(n) = 0 for n <= 0 except for a(0)=1.
Recurrence 2:
a(n) = 26*a(n-1) + 176*a(n-2) - 146*a(n-3) - 14*a(n-4) - 140*a(n-5) + 27*a(n-6) for n >= 6. For n < 6, recurrence 1 can be used.

A360575 Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes, 2 X 1 X 1 dominos and 2 X 2 X 1 plates.

Original entry on oeis.org

1, 8, 153, 2470, 41571, 693850, 11602579, 193942076, 3242104149, 54196828452, 905988148597, 15145052657186, 253174020910071, 4232212575080006, 70748267813548207, 1182671546039152712, 19770264765434877913, 330491902143708738464
Offset: 0

Views

Author

Gerhard Kirchner, Feb 12 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 11.

Crossrefs

Formula

G.f.: (1-8*x+4*x^2+11*x^3-6*x^4) / (1-16*x-21*x^2+157*x^3-100*x^4-65*x^5+42*x^6).
Recurrence 1:
a(n) = 8*a(n-1) + 3*b(n-1) + 2*c(n-1) + d(n-1) + e(n-1) + 7*a(n-2)
b(n) = 12*a(n-1) + 5*b(n-1) + 2*c(n-1) + 2*d(n-1) + e(n-1)
c(n) = 16*a(n-1) + 4*b(n-1) + 2*c(n-1)
d(n) = 2*a(n-1) + b(n-1) + d(n-1)
e(n) = 12*a(n-1) + 3*b(n-1)
with a(n),b(n),c(n),d(n),e(n)= 0 for n<=0 except for a(0)=1.
Recurrence 2:
a(n)=16*a(n-1) + 21*a(n-2) - 157*a(n-3) + 100*a(n-4) + 65*a(n-5) - 42*a(n-6)
for n>=6. For n<6, recurrence 1 can be used.

A360576 Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes, 2 X 2 X 1 plates and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 6, 122, 1768, 28844, 457592, 7318760, 116806896, 1865305376, 29782666544, 475549098160, 7593154541264, 121241257906000, 1935879286697296, 30910512661708432, 493553365105565264, 7880649886335326608, 125831666350680625104
Offset: 0

Views

Author

Gerhard Kirchner, Feb 12 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 12.

Crossrefs

Formula

G.f.: (1-9*x+4*x^2-16*x^3) / (1-15*x-28*x^2+214*x^3-192*x^4-384*x^5+128*x^6).
Recurrence 1:
a(n) = 8*a(n-1) + 3*b(n-1) + 2*c(n-1) + d(n-1) + e(n-1) + 7*a(n-2)
b(n) = 12*a(n-1) + 5*b(n-1) + 2*c(n-1) + 2*d(n-1) + e(n-1)
c(n) = 16*a(n-1) + 4*b(n-1) + 2*c(n-1)
d(n) = 2*a(n-1) + b(n-1) + d(n-1)
e(n) = 12*a(n-1) + 3*b(n-1)
with a(n),b(n),c(n),d(n),e(n)= 0 for n<=0 except for a(0)=1.
Recurrence 2:
a(n)=15*a(n-1) + 28*a(n-2) - 214*a(n-3) + 192*a(n-4) + 384*a(n-5) - 128*a(n-6)
for n>=6. For n<6, recurrence 1 can be used.

A360577 Number of 3-dimensional tilings of a 2 X 2 X n box using 2 X 2 X 1 plates, 2 X 1 X 1 dominos and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 3, 60, 657, 8311, 101284, 1246049, 15292819, 187803572, 2305968393, 28315208039, 347681742812, 4269186204201, 52421329940803, 643681521419708, 7903765218510353, 97050331862075975, 1191681006432895780, 14632650860374551265, 179674317212728197891, 2206220907971874345652
Offset: 0

Views

Author

Gerhard Kirchner, Feb 12 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 13.

Crossrefs

Formula

G.f.: (1-5*x-15*x^2-3*x^3+10*x^4) / (1-8*x-51*x^2-27*x^3+96*x^4+43*x^5-66*x^6).
Recurrence 1:
a(n) = 3*a(n-1) + b(n-1) + c(n-1) + 19*a(n-2) + 4*b(n-2) + c(n-2) + 2*d(n-2)
b(n) = 12*a(n-1) + 2*b(n-1) + 2*c(n-1) + e(n-1)
c(n) = 20*a(n-1) + 6*b(n-1) + 2*c(n-1) + 2*e(n-1)
d(n) = 4*a(n-1) + 2*b(n-1) + d(n-1)
e(n) = 24*a(n-1) + 7*b(n-1) + 2*c(n-1) + 2*d(n-1)
with a(n),b(n),c(n),d(n),e(n)= 0 for n<=0 except for a(0)=1.
Recurrence 2:
a(n)=8*a(n-1) + 51*a(n-2) + 27*a(n-3) - 96*a(n-4) - 43*a(n-5) + 66*a(n-6)
for n>=6. For n<6, recurrence 1 can be used.

A360645 Number of 4-dimensional tilings of a 2 X 2 X 2 X n box with 2 X 2 X 1 X 1 plates.

Original entry on oeis.org

1, 3, 30, 177, 1281, 8520, 58629, 397887, 2715510, 18490533, 126023349, 858595560, 5850498441, 39863005323, 271617783150, 1850725023657, 12610357769721, 85923544106760, 585460036653789, 3989166905015367, 27181111280961990, 185204779320272253
Offset: 0

Views

Author

Gerhard Kirchner, Feb 15 2023

Keywords

Comments

The figure shows three 2 X 2 X 2 cubes as intersections of three successive hyperplanes (distance 1) with the box. The 3-d cross-section of a 2 X 2 X 1 X 1 plate is a 2 X 2 X 1 plate (p4) as part of one cube or a 2 X 1 X 1 domino if the plate (p2) connects two cubes. p4 or p2 indicates the number of unit cubes on the current level (hyperplane). PQRS and P'Q'R'S' (not visible: P') is one of three ways to select a pair of p4-plates. Q'Q"R"S' represents a p2-plate.
Suppose the box is completely tiled up to a certain level. Then the next (current) level may be empty (profile A0) or not (profile B0). The index 0 is used for the current level and continued with 1,2... Transitions:
a) A0->3*A1 (3 ways of selecting a pair of p4-plates, also A001045(2)=3).
b) A0->9*A2 (9 ways of tiling a 2 X 2 X 2 cube with 3d-dominos, also A006253(2)=9).
c) A0->12*B1. One p4-plate and two p2-plates can be selected in 12 ways: 6 faces of the 2 X 2 X 2 cube and two ways of selecting a pair of dominos on each face. They tile the next level with corresponding dominos. A further nonempty profile does not occur. Also, A359884(2)-A006253(2)-A001045(2)=24-9-3=12.
d) B0->1*A1 (one accomplishing p4-plate is placed on B0).
e) B0->*2B1 (2 ways of selecting a pair of dominos on B0).
Let a(n) and b(n) be the number of tilings of the 2 X 2 X 2 X n box ending with an A- or a B-profile respectively. With the transitions above, one obtains recurrence 1.
/\ /\ /\
/ \ / \ / \
/ \ S' /\ / \ /\ / \ /\
/ \ / \ / \ / \ / \ / \
|\ / \ /||\ / \ /||\ / \ /|
| \ / \ / || \ / \ / || \ / \ / |
| S |\ /| R'|| |\ /| R"|| |\ /| |---> 4th dimension
|\ | \ / | /||\ | \ / | /||\ | \ / | /|
| \| R | |/ || \| | |/ || \| | |/ |
| P |\ | /| Q'|| |\ | /| Q"|| |\ | /| |
\ | \|/ | / \ | \|/ | / \ | \|/ | /
\| Q | |/ \| | |/ \| | |/
\ | / \ | / \ | /
\|/ \|/ \|/

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 15, -18}, {1, 3, 30}, 25] (* Paolo Xausa, May 28 2024 *)

Formula

Recurrence 1: a(n) = 3*a(n-1) + b(n-1) + 9*a(n-2), b(n) = 12*a(n-1) + 2*b(n-1), with a(0) = 1 and a(-1) = b(0) = 0.
Recurrence 2: a(n) = 5*a(n-1) + 15*a(n-2) - 18*a(n-3).
G.f.: (1-2*x) / (1-5*x-15*x^2+18*x^3).

A360644 Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes, 2 X 1 X 1 dominos, 2 X 2 X 1 plates and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 12, 513, 16194, 547543, 18234354, 609298887, 20344385080, 679408772089, 22688284005780, 757662377924917, 25301659203704234, 844933359518672599, 28216027727373068302, 942256839186226313727, 31466085716246304261600, 1050790517091131646143477
Offset: 0

Views

Author

Gerhard Kirchner, Feb 15 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 14.

Crossrefs

Formula

G.f.: (1-16*x-18*x^2-13*x^3+10*x^4) / (1-28*x-195*x^2+497*x^3-30*x^4+79*x^5-66*x^6)
Recurrence 1:
a(n) = 12*a(n-1) + 4*b(n-1) + 2*c(n-1) + d(n-1) + e(n-1) + 43*a(n-2) + 8*b(n-2) + c(n-2) + 2*d(n-2)
b(n) = 32*a(n-1) + 9*b(n-1) + 4*c(n-1) + 2*d(n-1) + e(n-1)
c(n) = 60*a(n-1) + 16*b(n-1) + 6*c(n-1) + 4*d(n-1) + 2*e(n-1)
d(n) = 14*a(n-1) + 3*b(n-1) + d(n-1)
e(n) = 64*a(n-1) + 13*b(n-1) + 2*c(n-1) + 2*d(n-1)
with a(n),b(n),c(n),d(n),e(n)= 0 for n<=0 except for a(0)=1.
Recurrence 2:
a(n)=28*a(n-1) + 195*a(n-2) - 497*a(n-3) + 30*a(n-4) - 79*a(n-5) + 66*a(n-6)
for n>=6. For n<6, recurrence 1 can be used.
Previous Showing 21-30 of 31 results. Next