cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A306334 a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.

Original entry on oeis.org

1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1

Views

Author

Vincent Champain, Feb 08 2019

Keywords

Comments

Linear hydrocarbons are molecules made of carbon (C) and hydrogen (H) atoms organized without cycles.
a(n) <= A002986(n) because molecules can be acyclic but not linear (i.e., including carbon atoms bonded with more than two other carbons).
From Petros Hadjicostas, Nov 16 2019: (Start)
We prove Vaclav Kotesovec's conjectures from the Formula section. Let M = [[0,0,1], [0,1,1], [1,1,1]], X(n) = M^(n-2), and Y(n) = M^(floor(n/2)-2) = X(floor(n/2)) (with negative powers indicating matrix inverses). Let also, t_1 = [1,1,1]^T, t_2 = [1,2,2]^T, and t_3 = [1,2,3]^T. In addition, define b(n) = (1/2)*(t_1^T X(n) t_1) and c(n) = (1/2)*(t_3^T Y(n) t_1) if n is even and = (1/2)*(t_2^T Y(n) t_1) if n is odd.
We have a(n) = b(n) + c(n) for n >= 1. Since the characteristic polynomial of Vaclav Kotesovec's recurrence is x^9 - 2*x^8 - 3*x^7 + 5*x^6 + x^5 + 2*x^3 - 3*x^2 - x + 1 = g(x)*g(x^2), where g(x) = x^3 - 2*x^2 - x + 1, to prove his first conjecture, it suffices to show that b(n) - 2*b(n-1) - b(n-2) + b(n-3) = 0 (whose characteristic polynomial is g(x)) and c(n) - 2*c(n-2) - c(n-4) + c(n-6) = 0 (whose characteristic polynomial is g(x^2)).
Note that 2*b(n) = A006356(n-1) for n >= 1. (See the comments by L. Edson Jeffery and R. J. Mathar in the documentation of that sequence.) Also, 2*c(2*n) = A006356(n) and 2*c(2*n-1) = A006054(n+1) for n >= 1.
Properties of the polynomial g(x) = x^3 - 2*x^2 - x + 1 and its roots were studied by Witula et al. (2006) (see Corollary 2.4). This means that a(n) can essentially be expressed in terms of exp(I*2*Pi/7), but we omit the discussion. See also the comments for sequence A006054.
The characteristic polynomial of matrix M is g(x). By the Cayley-Hamilton theorem, 0 = g(M) = M^3 - 2*M^2 - M + I_3, and thus, for n >= 5, X(n) - 2*X(n-1) - X(n-2) + X(n-3) = M^(n-2) - 2*M^(n-3) - M^(n-4) + M^(n-5) = 0. Pre-multiplying by (1/2)*t_1^T and post-multiplying by t_1, we get that b(n) - 2*b(n-1) - b(n-2) + b(n-3) = 0 for n >= 5.
Similarly, for n >= 10, Y(n) - 2*Y(n-2) - Y(n-4) + Y(n-6) = X(floor(n/2)) - 2*X(floor((n-2)/2)) - X(floor((n-4)/2)) + X(floor((n-6)/2)) = X(floor(n/2)) - 2*X(floor(n/2) - 1) - X(floor(n/2) - 2) + X(floor(n/2) - 3) = 0. Pre-multiplying by (1/2)*t_3^T (when n is even) or by (1/2)*t_2^T (when n is odd), and post-multiplying by t_1, we get c(n) - 2*c(n-2) - c(n-4) + c(n-6) = 0 for n >= 10.
Since the characteristic polynomial of Vaclav Kotesovec's recurrence is g(x)*g(x^2), which is a polynomial of degree 9, the denominator of the g.f. of the sequence (a(n): n >= 1) should be x^9*g(1/x)*g(1/x^2) = (1 - 2*x - x^2 + x^3)*(1 - 2*x^2 - x^4 + x^6), as Vaclav Kotesovec conjectured below. The numerator of Vaclav Kotesovec's g.f. can be easily derived using the initial conditions (from a(1) = 1 to a(9) = 409). (End)

Examples

			For n=1, there is one possibility: CH4.
For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2.
For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3.
For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
		

Crossrefs

Other hydrocarbon related sequences: A002986, A018190, A129012.

Programs

  • Maple
    with(LinearAlgebra):
    M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]):
    X := proc(n) MatrixPower(M, n - 2): end proc:
    Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc:
    a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))):
         end proc:
    seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
  • Mathematica
    M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}};
    X[n_] := MatrixPower[M, n - 2];
    Y[n_] := MatrixPower[M, Floor[1/2*n] - 2];
    a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
  • Python
    from numpy import array as npa
    from numpy.linalg import matrix_power as npow
    def F(n):
         if n<4: return([0,1,3,4][n])
         m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object)
         m2=npow(m,n//2-2)
         return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)

Formula

a(n) = (1/2) * (Sum_{i,j = 1..3} X_{ij} + Sum_{i,j = 1..3} Y_{ij} * min(j, 3 - (n&1))), where M = [[0,0,1], [0,1,1], [1,1,1]], X = [X_{ij}: i,j = 1..3] = M^(n-2), and Y = [Y_{ij}: i,j = 1..3] = M^(floor(n/2)-2)) for n >= 1 (with negative powers indicating matrix inverses). [Edited by Petros Hadjicostas, Nov 16 2019]
Conjectures from Vaclav Kotesovec, Feb 12 2019: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 5*a(n-3) - a(n-4) - 2*a(n-6) + 3*a(n-7) + a(n-8) - a(n-9), for n >= 10.
G.f.: (1 - x - 2*x^2 - x^4 + 2*x^5 + x^6 - x^7) / ((1 - 2*x - x^2 + x^3)*(1 - 2*x^2 - x^4 + x^6)) - 1. (End) [These conjectures are true. See my comments above. - Petros Hadjicostas, Nov 17 2019]
From Petros Hadjicostas, Nov 17 2019: (Start)
a(2*n) = (1/2)*(A006356(2*n-1) + A006356(n)).
a(2*n-1) = (1/2)*(A006356(2*n-2) + A006054(n+1)). (End)

A030113 Number of distributive lattices; also number of paths with n turns when light is reflected from 9 glass plates.

Original entry on oeis.org

1, 9, 45, 285, 1695, 10317, 62349, 377739, 2286648, 13846117, 83833256, 507596153, 3073376281, 18608642427, 112671254094, 682200039446, 4130572919575, 25009722123505, 151428434581516, 916866281219258
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(9) be the 9 X 9 matrix (0,0,0,1)/(0,0,1,1)/(0,0,1,1)/(1,1,1,1) and let v(9) be the vector (1,1,1,1,1,1,1,1,1); then v(9)*M(9)^n = (x,y,z,t,u,v, w,m,a(n)) - Benoit Cloitre, Sep 29 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x^8 - x^7 -7 x^6 + 6 x^5 + 15 x^4 - 10 x^3 - 10 x^2 + 4 x + 1)/(x^9 - x^8 - 8 x^7 + 7 x^6 + 21 x^5 - 15 x^4 - 20 x^3 + 10 x^2 + 5 x - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{5,10,-20,-15,21,7,-8,-1,1},{1,9,45,285,1695,10317,62349,377739,2286648},30] (* Harvey P. Dale, Dec 13 2015 *)
  • PARI
    k=9; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

G.f.: -(x^8 -x^7 -7*x^6 +6*x^5 +15*x^4 -10*x^3 -10*x^2 +4*x +1)/(x^9 -x^8 -8*x^7 +7*x^6 +21*x^5 -15*x^4 -20*x^3 +10*x^2 +5*x -1). [Colin Barker, Nov 09 2012]

Extensions

More terms from Benoit Cloitre, Sep 29 2002

A030115 Number of distributive lattices; also number of paths with n turns when light is reflected from 11 glass plates.

Original entry on oeis.org

1, 11, 66, 506, 3641, 26818, 196119, 1437799, 10532302, 77173602, 565424068, 4142793511, 30353430420, 222394369223, 1629443428021, 11938642758854, 87472304803355, 640893994357062, 4695716053827835, 34404674660198306
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(11) be the 11 X 11 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(11) be the vector (1,1,1,1,1,1,1,1,1); then v(11)*M(11)^n = (x,y,z,t,u,v, w,m,n,o,a(n)) - Benoit Cloitre, Sep 29 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x - 1) (x^3 - x^2 - 2 x + 1) (x^6 + x^5 - 6 x^4 - 6 x^3 + 8 x^2 + 8 x + 1)/(x^11 -x^10 - 10 x^9 + 9 x^8 + 36 x^7 - 28 x^6 - 56 x^5 + 35 x^4 + 35 x^3 - 15 x^2 - 6 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 19 2013 *)
  • PARI
    k=11; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

G.f.: -(x -1)*(x^3 -x^2 -2*x +1)*(x^6 +x^5 -6*x^4 -6*x^3 +8*x^2 +8*x +1)/(x^11 -x^10 -10*x^9 +9*x^8 +36*x^7 -28*x^6 -56*x^5 +35*x^4 +35*x^3 -15*x^2 -6*x +1). [Colin Barker, Nov 09 2012]

Extensions

More terms from Benoit Cloitre, Sep 29 2002

A180262 Triangle by rows, generated from a triangle with (1,2,1,1,1,...) in every column.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 1, 6, 6, 1, 1, 3, 12, 14, 1, 1, 3, 6, 28, 31, 1, 1, 3, 6, 14, 62, 70, 1, 1, 3, 6, 14, 31, 140, 157, 1, 1, 3, 6, 14, 31, 70, 314, 353, 1, 1, 3, 6, 14, 31, 70, 157, 706, 793, 1, 1, 3, 6, 14, 31, 70, 157, 353, 1586, 1782
Offset: 0

Views

Author

Gary W. Adamson, Aug 21 2010

Keywords

Comments

Row sums = A006356: (1, 3, 6, 14, 31, 70, 157, 353,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  1, 2, 3;
  1, 1, 6,  6;
  1, 1, 3, 12, 14;
  1, 1, 3,  6, 28, 31;
  1, 1, 3,  6, 14, 62,  70;
  1, 1, 3,  6, 14, 31, 140, 157;
  1, 1, 3,  6, 14, 31,  70, 314, 353;
  1, 1, 3,  6, 14, 31,  70, 157, 706,  793;
  1, 1, 3,  6, 14, 31,  70, 157, 353, 1586, 1782;
  1, 1, 3,  6, 14, 31,  70, 157, 353,  793, 3564, 4004;
  1, 1, 3,  6, 14, 31,  70, 157, 353,  793, 1782, 8008,  8997;
  1, 1, 3,  6, 14, 31,  70, 157, 353,  793, 1782, 4004, 17994, 20216;
  ...
Example: row 3 of the triangle = (1, 1, 6, 6) = termwise products of (1, 1, 2, 1) and (1, 1, 3, 6).
		

Crossrefs

Cf. A006356.

Formula

Let M be an infinite Toeplitz lower triangular matrix with (1,2,1,1,1,..) in every column. A180262 = M * a diagonalized variant of A006356 such that the main diagonal = A006356 prefaced with a 1: (1, 1, 3, 6, 14, 31,...) and the rest zeros.

A030114 Number of distributive lattices; also number of paths with n turns when light is reflected from 10 glass plates.

Original entry on oeis.org

1, 10, 55, 385, 2530, 17017, 113641, 760804, 5089282, 34053437, 227837533, 1524414737, 10199443436, 68241935348, 456589252304, 3054922560820, 20439707165252, 136756870048981, 915005341022187, 6122067418010887, 40961191948244094, 274060890253820561
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(10) be the 10 X 10 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(10) be the vector (1,1,1,1,1,1,1,1,1); then v(10)*M(10)^n = (x,y,z,t,u,v, w,m,a(n)) - Benoit Cloitre, Sep 29 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x^9 + x^8 - 8 x^7 - 7 x^6 + 21 x^5 + 15 x^4 - 20 x^3 - 10 x^2 + 5 x + 1)/((x + 1) (x^3 + x^2 - 2 x - 1) (x^6 - x^5 - 6 x^4 + 6 x^3 8 x^2 - 8 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
  • PARI
    k=10; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))))))) = -(x^9 +x^8 -8*x^7 -7*x^6 +21*x^5 +15*x^4 -20*x^3 -10*x^2 +5*x +1)/((x +1)*(x^3 +x^2 -2*x -1)*(x^6 -x^5 -6*x^4 +6*x^3 +8*x^2 -8*x +1)). [Colin Barker, Nov 09 2012]

Extensions

More terms from Benoit Cloitre, Sep 29 2002
a(20)-a(21) from Vincenzo Librandi, Oct 19 2013

A052949 Expansion of (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)).

Original entry on oeis.org

2, 2, 4, 7, 15, 32, 71, 158, 354, 794, 1783, 4005, 8998, 20217, 45426, 102070, 229348, 515339, 1157955, 2601900, 5846415, 13136774, 29518062, 66326482, 149034251, 334876921, 752461610, 1690765889, 3799116466, 8536537210, 19181424996
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A006356.

Programs

  • GAP
    a:=[2,2,4,7];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-2*a[n-3] +a[n-4]; od; a; # G. C. Greubel, Oct 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)) )); // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Prod(Union(Sequence(Z),Z),Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    LinearRecurrence[{3,-1,-2,1}, {2,2,4,7}, 40] (* G. C. Greubel, Oct 21 2019 *)
    CoefficientList[Series[(2-4x+x^3)/((1-x)(1-2x-x^2+x^3)),{x,0,50}],x] (* Harvey P. Dale, Jul 30 2024 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))) \\ G. C. Greubel, Oct 21 2019
    
  • Sage
    def A052949_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))).list()
    A052949_list(40) # G. C. Greubel, Oct 21 2019
    

Formula

G.f.: (2 -4*x +x^3)/((1-x)*(1 -2*x -x^2 +x^3)).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 1.
a(n) = A006356(n-1) + 1, n>0.
a(n) = 1 + Sum_{alpha=RootOf(1-2*z-z^2+z^3)} (1/7)*(1 + 2*alpha - alpha^2)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 05 2000

A052994 Expansion of 2x(1-x)/(1-2x-x^2+x^3).

Original entry on oeis.org

0, 2, 2, 6, 12, 28, 62, 140, 314, 706, 1586, 3564, 8008, 17994, 40432, 90850, 204138, 458694, 1030676, 2315908, 5203798, 11692828, 26273546, 59036122, 132652962, 298068500, 669753840, 1504923218, 3381531776, 7598232930, 17073074418
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Equals 2 * A006356(n-2), n>1.

Programs

  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Union(Sequence(Z),Z),Z)),Union(Z,Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • PARI
    concat(0, Vec(-2*x*(-1+x)/(x^3-x^2-2*x+1) + O(x^40))) \\ Michel Marcus, Mar 19 2015

Formula

G.f.: -2*x*(-1+x)/(x^3-x^2-2*x+1)
Recurrence: {a(0)=0, a(1)=2, a(2)=2, a(n)-a(n+1)-2*a(n+2)+a(n+3)=0}
Sum(2/7*(-_alpha+_alpha^2+1)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))

Extensions

More terms from James Sellers, Jun 05 2000

A121469 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n having k 1-cell columns (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 3, 4, 5, 0, 1, 6, 13, 7, 7, 0, 1, 14, 28, 27, 10, 9, 0, 1, 31, 70, 62, 45, 13, 11, 0, 1, 70, 164, 171, 108, 67, 16, 13, 0, 1, 157, 392, 429, 325, 166, 93, 19, 15, 0, 1, 353, 926, 1101, 862, 540, 236, 123, 22, 17, 0, 1, 793, 2189, 2766, 2355, 1499, 824
Offset: 0

Views

Author

Emeric Deutsch, Aug 03 2006

Keywords

Comments

Also number of nondecreasing Dyck paths of semilength n and such that there are k ascents of length 1. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing. Example: T(4,2)=5 because we have (U)D(U)DUUDD, (U)DUUDD(U)D, (U)DUUD(U)DD, UUDD(U)D(U)D and UUD(U)D(U)DD, where U=(1,1) and D=(1,-1); the ascents of length one are shown between parentheses (also the Dyck path UUDUDDUD has two ascents but it is not nondecreasing because the valleys have altitudes 1 and 0). Row sums are the odd-subscripted Fibonacci numbers (A001519). T(n,0)=A006356(n-3). Sum(k*T(n,k),k=0..n)=A094864(n-1).

Examples

			T(3,1)=3 because we have the three directed column-convex polyominoes: [(0,2),(0,1)], [(0,2),(1,2)] and [(0,1),(0,2)] (here the j-th pair within the square brackets gives the lower and upper levels of the j-th column of that particular polyomino).
Triangle starts:
  1;
  0,1;
  1,0,1;
  1,3,0,1;
  3,4,5,0,1;
  6,13,7,7,0,1;
		

Crossrefs

Cf. A001519 (row sums), A006356, A094864.

Programs

  • Maple
    G:=(1-2*z)/(1-(t+2)*z+(2*t-1)*z^2-(t-1)*z^3): Gser:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (1-2*z)/(1-(t+2)*z+(2*t-1)*z^2-(t-1)*z^3).

A190360 Number of one-sided n-step prudent walks, avoiding 4 or more consecutive east steps.

Original entry on oeis.org

1, 3, 7, 17, 40, 96, 229, 547, 1306, 3119, 7448, 17786, 42473, 101426, 242206, 578390, 1381200, 3298317, 7876408, 18808927, 44915872, 107259471, 256136497, 611656057, 1460639684, 3488019553, 8329419319, 19890721694, 47499206650
Offset: 0

Views

Author

Shanzhen Gao, May 09 2011

Keywords

Comments

a(n,k) is the number of one-sided n-step prudent walks, avoiding k or more consecutive east steps; k=4 in this sequence.

Crossrefs

Cf. A006356 = a(n,2), A033303 = a(n,3).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0,
          `if`(n=0, 1, b(n-1,0) +`if`(i<=0, b(n-1,-1), 0)+
          `if`(i>=0 and i<3, b(n-1,i+1), 0)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 04 2011
  • Mathematica
    (1+t-t^k)/(1-2*t-t^2+t^(k+1)) /. k -> 4 + O[t]^25 // CoefficientList[#, t]& (* Jean-François Alcover, Oct 24 2016 *)

Formula

G.f.: (1+t-t^k)/(1-2*t-t^2+t^(k+1)), (k=4 in this sequence).

A199853 Expansion of (1-3*x+x^3)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, -1, -1, -3, -6, -14, -31, -70, -157, -353, -793, -1782, -4004, -8997, -20216, -45425, -102069, -229347, -515338, -1157954, -2601899, -5846414, -13136773, -29518061, -66326481, -149034250, -334876920, -752461609, -1690765888, -3799116465, -8536537209
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2011

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==-1, a[2]== -1, a[3]== -3, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 13 2015 *)
    CoefficientList[Series[(1-3x+x^3)/(1-2x-x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,1,-1},{1,-1,-1,-3},40] (* Harvey P. Dale, May 31 2021 *)
  • PARI
    Vec((1-3*x+x^3)/(1-2*x-x^2+x^3) + O(x^40)) \\ Michel Marcus, Aug 13 2015

Formula

a(n) = 2*a(n-1) + a(n-2) - a(n-3) with a(0)=1, a(1)=-1, a(2)=-1, a(3)=-3.
a(n+1) = - A077998(n). - G. C. Greubel, Aug 14 2015
Previous Showing 41-50 of 57 results. Next