cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A066377 Number of numbers m <= n such that floor(sqrt(m)) divides m.

Original entry on oeis.org

1, 3, 6, 10, 16, 24, 33, 45, 60, 76, 96, 120, 145, 175, 210, 246, 288, 336, 385, 441, 504, 568, 640, 720, 801, 891, 990, 1090, 1200, 1320, 1441, 1573, 1716, 1860, 2016, 2184, 2353, 2535, 2730, 2926, 3136, 3360, 3585, 3825, 4080, 4336
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2001

Keywords

Crossrefs

Partial sums of A006446.

Programs

  • PARI
    { n=0; a=0; for (m=1, 10^9, if (m%floor(sqrt(m)) == 0, a+=m; write("b066377.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 12 2010

Formula

G.f.: -x*(x^3-x^2-x-1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Jan 12 2013

A261341 Numbers n such that round(n^(1/k)) divides n for all integers k>=1.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 42, 72, 240, 420, 600, 900, 1560, 1764, 3600, 6084, 8100, 46440, 1742400, 4062240, 35814240
Offset: 1

Views

Author

Max Alekseyev, Aug 15 2015

Keywords

Comments

There are no other terms below 10^16.
Is this a finite sequence?

Crossrefs

Subsequence of A006446 and A261342.

Programs

  • Mathematica
    isA[n_] :=
    Block[{t},
      For[k = 2, (t = Floor[1/2 + n^(1/k)]) >= 2, k++,
       If[Mod[n, t] != 0, Return[False]]]; Return[True]]
    Select[Range[1, 100000], isA[#] &] (* Julien Kluge, Apr 04 2016 *)
  • PARI
    { isA261341(n) = my(k,t); k=2; until(t<=2, t=round(sqrtn(n,k)); if(n%t,return(0)); k++); 1; }

A336068 Numbers k such that the exponent of the highest power of 3 dividing k (A007949) is a divisor of k.

Original entry on oeis.org

3, 6, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 48, 51, 54, 57, 60, 66, 69, 72, 75, 78, 84, 87, 90, 93, 96, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 156, 159, 165, 168, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are divisible by 3 by definition.
Šalát (1994) proved that the asymptotic density of this sequence is 0.287106... (A336069).

Examples

			3 is a term since A007949(3) = 1 is a divisor of 3.
		

Crossrefs

A055777 is a subsequence.

Programs

  • Mathematica
    Select[Range[200], Mod[#, 3] == 0 && Divisible[#, IntegerExponent[#, 3]] &]
  • PARI
    isok(m) = if (!(m%3), (m % valuation(m,3)) == 0); \\ Michel Marcus, Jul 08 2020

A162190 Triangle read by rows in which row n lists the divisors of n, the n-th prime and the consecutive composites that are greater than the n-th prime, with a(0)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 3, 5, 6, 1, 2, 4, 7, 8, 9, 10, 1, 5, 11, 12, 1, 2, 3, 6, 13, 14, 15, 16, 1, 7, 17, 18, 1, 2, 4, 8, 19, 20, 21, 22, 1, 3, 9, 23, 24, 25, 26, 27, 28, 1, 2, 5, 10, 29, 30, 1, 11, 31, 32, 33, 34, 35, 36, 1, 2, 3, 4, 6, 12, 37, 38, 39, 40
Offset: 0

Views

Author

Omar E. Pol, Jun 30 2009

Keywords

Examples

			Triangle begins:
1;
1,(2);
1,.2,(3),4;
1,....3,...(5),6;
1,.2,....4,......(7),8,.9,10;
1,..........5,..............(11),12;
1,.2,.3,.......6,..................(13),14,15,16;
1,................7,............................(17),18;
1,.2,....4,..........8,................................(19),20,21,22;
		

Crossrefs

A241083 LCM of n and largest integer <= sqrt(n).

Original entry on oeis.org

1, 2, 3, 4, 10, 6, 14, 8, 9, 30, 33, 12, 39, 42, 15, 16, 68, 36, 76, 20, 84, 44, 92, 24, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 36, 222, 114, 78, 120, 246, 42, 258, 132, 90, 138, 282, 48, 49, 350, 357, 364, 371, 378, 385, 56, 399, 406, 413, 420
Offset: 1

Views

Author

J. Lowell, Apr 15 2014

Keywords

Comments

a(n) = n iff n is in A006446. - Ivan Neretin, Apr 27 2017

Examples

			a(18) cannot be 18 because 18 is not a multiple of 4, the largest integer <= sqrt(18).
		

Crossrefs

A179204 is a sequence that can be defined in terms of this sequence.
Cf. A000196.

Programs

Formula

a(n) = lcm(n, floor(sqrt(n))) = lcm(n, A000196(n)). - Wesley Ivan Hurt, Apr 15 2014

Extensions

Extended by Wesley Ivan Hurt, Apr 15 2014

A284038 Lexicographically earliest sequence of distinct positive terms such that A000196(n) divides a(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 9, 15, 18, 21, 24, 27, 30, 16, 20, 28, 32, 36, 40, 44, 48, 52, 5, 25, 35, 45, 50, 55, 60, 65, 70, 75, 80, 42, 54, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 7, 14, 49, 56, 63, 77, 91, 98, 105, 112, 119, 133, 140, 147, 154, 64
Offset: 1

Views

Author

Rémy Sigrist, May 25 2017

Keywords

Comments

This is a permutation of the natural numbers, with inverse A287433; for any n > 0, n appears among the first n^2 terms.
This sequence is similar to A075383: here we have runs of length 2*k+1, there of length k, of multiples of k.
a(p^2) = p for any prime p > 3.
All fixed points belong to A006446.
Conjecturally:
- all fixed points > 3 are squares,
- if a(n) < n, then A000196(n) belongs to A007310 \ {1},
- if k belongs to A007310 \ {1}, then a(n) < n for some n such that A000196(n) = k.

Crossrefs

A324174 Integers k such that 2*floor(sqrt(k)) divides k.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 30, 36, 48, 56, 64, 80, 90, 100, 120, 132, 144, 168, 182, 196, 224, 240, 256, 288, 306, 324, 360, 380, 400, 440, 462, 484, 528, 552, 576, 624, 650, 676, 728, 756, 784, 840, 870, 900, 960, 992, 1024, 1088, 1122, 1156, 1224, 1260, 1296
Offset: 1

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1000 ], Mod[ #, 2*Floor[ Sqrt[ # ]//N ] ]==0& ]
    LinearRecurrence[{1,0,2,-2,0,-1,1},{2,4,8,12,16,24,30},70] (* Harvey P. Dale, Dec 11 2022 *)
  • PARI
    is(n) = n%(2*sqrtint(n)) == 0;

Formula

For k >= 1, a(3k-2) = 4k^2 - 2k, a(3k-1) = 4k^2 and a(3k) = 4k^2 + 4k.

A336063 Numbers divisible by the minimal exponent in their prime factorization (A051904).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is 1 (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051904(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    h[1] = 0; h[n_] := Min[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, h[#]] &]
    Select[Range[2,100],Divisible[#,Min[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    isok(m) = if (m>1, (m % vecmin(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A079644 a(n) = (n mod sqrtint(n)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 2, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Benoit Cloitre, Jan 31 2003

Keywords

Comments

Record values: given an m>=0, the first n for which a(n)=m is n = (m+1)^2+m = A028387(m). Also, for n>3, n is a square if and only if a(n)=0 and a(n-1)=0. - Stanislav Sykora, Aug 13 2014

Crossrefs

Programs

  • Maple
    a:= proc(n) local r;
    r:= isqrt(n);
    if r^2 > n then r:= r-1 fi;
    n mod r;
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Aug 13 2014
  • Mathematica
    A079644[n_]:=Mod[n,Floor[n^(1/2)]]; Array[A079644,200] (* Enrique Pérez Herrero, Oct 06 2011 *)
    Table[Mod[n,Floor[Sqrt[n]]],{n,110}] (* Harvey P. Dale, Apr 10 2016 *)
  • PARI
    a(n)=n%sqrtint(n)

Formula

a(A006446(n))=0; a(A033638(n))=1.
When n>0, a(A000290(n))=0; when n>1, a(A000290(n)-1)=0. - Stanislav Sykora, Aug 13 2014
a(n) = 0 if n or n+1 or 4*n+1 is a square, otherwise a(n) = a(n-1)+1. - Robert Israel, Aug 13 2014
G.f.: Sum_{r>=2} x^(r^2) * (x^r + 1) * ((r-1)*x^(r+1) - r*x^r + x)/(1 - x)^2. - Robert Israel, Aug 13 2014

Extensions

Definition clarified by N. J. A. Sloane, Jan 11 2025

A379604 a(n) is the maximum number of items in a bucket for the bucket sort algorithm with input {0, 1, ..., n-1} and B = floor(sqrt(n)) buckets.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 4, 4, 3, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10
Offset: 1

Views

Author

Darío Clavijo, Dec 28 2024

Keywords

Comments

With uniformly distributed input, the maximum number of items in a bucket is ceiling(n/B).
If B divides n then all buckets hold the same number of items, which is when n is in A006446.

Examples

			For n = 10 a(10) = 4 because:
Input array: [0,1,2,3,4,5,6,7,8,9] and floor(sqrt(10)) = 3.
Resulting 3 buckets of [0, 1, 2, 3], [4, 5, 6, 7], [8, 9] and the number of items in the buckets is [4,4,2], which is maximum a(10) = 4.
		

Crossrefs

Programs

  • Mathematica
    A379604[n_] := Ceiling[n/Floor[Sqrt[n]]]; Array[A379604, 100] (* Paolo Xausa, Feb 03 2025 *)
  • Python
    from sympy.core.intfunc import isqrt
    a = lambda n: ((n-1) // isqrt(n)) + 1
    print([a(n) for n in range(1,85)])

Formula

a(n) = ceiling(n/floor(sqrt(n))).
Previous Showing 11-20 of 25 results. Next