A248658
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^(2*k).
Original entry on oeis.org
1, 1, 1, 2, 9, 28, 66, 153, 433, 1345, 3952, 10991, 30954, 90988, 271845, 804153, 2361457, 6979690, 20842285, 62493914, 187274712, 561448399, 1688263179, 5093148285, 15393417178, 46570446829, 141063389488, 427979185898, 1300470246165, 3956367018001, 12048354848013, 36728336040306
Offset: 0
G.f. A(x) = 1 + x + x^2 + 2*x^3 + 9*x^4 + 28*x^5 + 66*x^6 + 153*x^7 +...
which equals the series:
A(x) = 1/(1-x-x^3) + 3!/1!^3*x^4/(1-x-x^3)^4 + 6!/2!^3*x^8/(1-x-x^3)^7 + 9!/3!^3*x^12/(1-x-x^3)^10 + 12!/4!^3*x^16/(1-x-x^3)^13 +...
The g.f. also equals the series:
A(x) = 1 +
x*(1 + x^2) +
x^2*(1 + 2^3*x^2 + x^4) +
x^3*(1 + 3^3*x^2 + 3^3*x^4 + x^6) +
x^4*(1 + 4^3*x^2 + 6^3*x^4 + 4^3*x^6 + x^8) +
x^5*(1 + 5^3*x^2 + 10^3*x^4 + 10^3*x^6 + 5^3*x^8 + x^10) +...
-
Table[Sum[Binomial[n-2*k,k]^3,{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2014 *)
-
{a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^3*x^(2*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=polcoeff(sum(m=0, n,x^(4*m)/(1-x-x^3 +x*O(x^n))^(3*m+1)*(3*m)!/(m!)^3), n)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=sum(k=0, n\3, binomial(n-2*k, k)^3)}
for(n=0, 40, print1(a(n), ", "))
A318107
Triangle read by rows: T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!).
Original entry on oeis.org
1, 6, 1, 90, 24, 1, 1680, 630, 60, 1, 34650, 16800, 2520, 120, 1, 756756, 450450, 92400, 7560, 210, 1, 17153136, 12108096, 3153150, 369600, 18900, 336, 1, 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1, 9465511770, 8779605120, 3259095840, 617512896, 63063000, 3363360, 83160, 720, 1
Offset: 0
A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 6, 1;
[2] 90, 24, 1;
[3] 1680, 630, 60, 1;
[4] 34650, 16800, 2520, 120, 1;
[5] 756756, 450450, 92400, 7560, 210, 1;
[6] 17153136, 12108096, 3153150, 369600, 18900, 336, 1;
[7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1;
[8] ...
-
T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!);
concat(vector(10, n, vector(n, k, T(n-1, k-1))))
/* test:
P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
return(a);
};
apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
};
\\ diagonal property:
x='x; y='y; z='z; t='t;
diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x,y,z]) == vector(11, n, P(n-1))
\\ annihilating diffop:
y = Ser(vector(101, n, P(n-1)), 'x);
p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6);
0 == apply_diffop(p, y)
*/
A338075
Diagonal terms in the expansion of (1+x*y*z)/(1-x-y-z).
Original entry on oeis.org
1, 7, 96, 1770, 36330, 791406, 17909892, 416226096, 9864584730, 237338943270, 5778870222840, 142077992254380, 3521258757984240, 87862829835387600, 2205050763983594400, 55615552451285359680, 1408840444191389714010, 35825204161237194511830, 914089586182634239686000
Offset: 0
- Abdelaziz, Youssef, C. Koutschan, and J. M. Maillard. "On Christol’s conjecture." Journal of Physics A: Mathematical and Theoretical 53.20 (2020): 205201; arXiv:1912.10259.
-
N:= 25: # for a(0)..a(N)
F:= (1+x*y*z)/(1-x-y-z):
S1:= series(F, x, N+1):
L1:= [seq(coeff(S1, x, i), i=0..N)]:
L2:= [seq(coeff(series(L1[i+1], y, i+1), y, i), i=0..N)]:
seq(coeff(series(L2[i+1], z, i+1), z, i), i=0..N); # Robert Israel, Oct 25 2020
-
nmax = 20; Flatten[{1, Table[Coefficient[Series[(1 + x*y*z)/(1 - x - y - z), {x, 0, n}, {y, 0, n}, {z, 0, n}], x^n*y^n*z^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *)
-
{a(n) = if(n==0, 1, (3*(n-1))!/(n-1)!^3+(3*n)!/n!^3)} \\ Seiichi Manyama, Oct 31 2020
A361031
a(n) = (3^3)*(1*2*4*5*7*8*10*11)*(3*n)!/(n!*(n+4)!^2).
Original entry on oeis.org
11550, 2772, 4620, 15840, 81675, 550550, 4492488, 42325920, 446185740, 5148297000, 63985977000, 846321189120, 11802213457650, 172255143129300, 2615726247519000, 41127042052404000, 666874986879730860, 11114583114662181000, 189866473537245687000, 3316382259894423720000
Offset: 0
A361716
a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n,k)^2*binomial(n-1,k).
Original entry on oeis.org
0, 1, -3, -8, 45, 126, -840, -2400, 17325, 50050, -378378, -1100736, 8576568, 25069968, -199536480, -585307008, 4732755885, 13919870250, -113936715750, -335813478000, 2775498395670, 8194328596740, -68263497731520, -201822515032320
Offset: 0
-
seq(add((-1)^k*binomial(n,k)^2*binomial(n-1,k), k = 0..n-1), n = 0..20);
-
A361716[n_]:=Sum[(-1)^k*Binomial[n,k]^2Binomial[n-1,k],{k,0,n-1}];Array[A361716,30,0] (* Paolo Xausa, Oct 06 2023 *)
-
a(n) = sum(k = 0, n-1, (-1)^k*binomial(n,k)^2*binomial(n-1,k)); \\ Michel Marcus, Mar 26 2023
-
from math import comb
def A361716(n): return (sum(comb(n,k)**3*k if k&1 else -comb(n,k)**3*k for k in range(n+1)))//(n if n&1 else -n) if n else 0 # Chai Wah Wu, Mar 27 2023
A364507
a(n) = (5*n)!*(4*n)! / ((3*n)!^2 * (2*n)! * n!).
Original entry on oeis.org
1, 40, 5880, 1101100, 229265400, 50678855040, 11641642112100, 2746924727976000, 661097260785195000, 161538994454795003200, 39949572934939198410880, 9976687616280042928424700, 2511716999955421326631644900, 636662322699394050738883008000
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 2746924727976000 - 40 = (2^3)*5*(7^4)*28601881799 == 0 (mod 7^4).
a(11) - a(1) = 9976687616280042928424700 - 40 = (2^2)*5*(11^3)*18397*3568463* 5708869513 == 0 (mod 11^3).
-
seq( (5*n)!*(4*n)!*(2*n)! / ((3*n)!^2 * (2*n)!^2 * n!), n = 0..15);
-
A364507[n_]:=(5n)!(4n)!/((3n)!^2(2n)!n!);Array[A364507,15,0] (* Paolo Xausa, Oct 06 2023 *)
A364508
a(n) = (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!).
Original entry on oeis.org
1, 350, 594594, 1299170600, 3164045050530, 8188909171581600, 22035578229399735000, 60924423899585957558848, 171839010049825493742617250, 492149504510899056782561257748, 1426695143534668869395862598229344, 4176678405144148418744441910948978000
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 60924423899585957558848 - 350 = 2*(7^4)*12687301936606821649 == 0 (mod 7^4).
a(11) - a(1) = 4176678405144148418744441910948978000 - 350 = 2*(5^2)*7*(11^3)* 29*139*1181*1883311859633620981885519 == 0 (mod 11^3).
-
seq( (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!), n = 0..15);
-
A364508[n_]:=(7n)!(6n)!(2n)!/((4n)!^2(3n)!^2n!);Array[A364508,15,0] (* Paolo Xausa, Oct 06 2023 *)
A364511
a(n) = (6*n)!*(5*n)!*(2*n)! / ((4*n)!^2 * (3*n)! * n!^2).
Original entry on oeis.org
1, 50, 8910, 2011100, 503909070, 133954543800, 36992598142500, 10491379251679040, 3034472729231379150, 891028813210575018980, 264787855164104281785160, 79455812929030151249454000, 24035311050907120054564683300, 7320107028326385998504601648000
Offset: 0
-
seq((6*n)!*(5*n)!*(2*n)! / ((4*n)!^2 * (3*n)! * n!^2), n = 0..15);
-
A364511[n_]:=(6n)!(5n)!(2n)!/((4n)!^2(3n)!n!^2);Array[A364511,15,0] (* Paolo Xausa, Oct 05 2023 *)
A367567
a(n) = Product_{k=0..n} (3*k)! / k!^3.
Original entry on oeis.org
1, 6, 540, 907200, 31434480000, 23788231346880000, 408042767492495815680000, 162838835029822082951032012800000, 1541352909587869227178909850805190656000000, 351233376660297011570511252132131832794456064000000000, 1949695346852822356399298814748829537555898997004605685760000000000
Offset: 0
-
Table[Product[(3*k)!/k!^3, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]
A071803
Number of paths in the lattice [0..n] X [0..n] X [0..n] which do not pass through the point (floor(n/2), floor(n/2), floor(n/2)). Number of paths through a lattice containing a "hole".
Original entry on oeis.org
54, 1140, 26550, 605556, 14330736, 340860960, 8264889270, 201651836100, 4978317147804, 123546256876224, 3090501687886704, 77632745316063840, 1961313438507566400, 49717549985405892480, 1265749551338006549430, 32312920048897640674500, 827693426702217868006500
Offset: 2
-
g:= hypergeom([1/6,1/3,2/3,5/6],[ 1/2,1/2,1], 729*x^2) - hypergeom([1/3,1/3,2/3,2/3],[ 1,1,1], 729*x^2) + 6*x*( hypergeom([2/3,5/6,7/6,4/3],[ 1,3/2,3/2], 729*x^2) - hypergeom([1/3,2/3,4/3,5/3],[ 1,2,2], 729*x^2)):
S:= series(g,x,101):
seq(coeff(S,x,j),j=2..100); # Robert Israel, Oct 20 2016
-
Table[Factorial[3n]/Factorial[n]^3 - Factorial[3Floor[n/2]]Factorial[3 Ceiling[n/2]]/Factorial[Floor[n/2]]^3/Factorial[Ceiling[n/2]]^3, {n, 2, 20}]
Rest[Rest[CoefficientList[Series[HypergeometricPFQ[{1/6, 1/3, 2/3, 5/6}, {1/2, 1/2, 1}, 729 x^2] - HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1, 1, 1}, 729 x^2] + 6 x (HypergeometricPFQ[{2/3, 5/6, 7/6, 4/3}, {1, 3/2, 3/2}, 729 x^2] - HypergeometricPFQ[{1/3, 2/3, 4/3, 5/3}, {1, 2, 2}, 729 x^2]), {x, 0, 20}], x]]] (* Benedict W. J. Irwin, Oct 20 2016 *)
-
A006480(n)=(3*n)!/n!^3
a(n) = A006480(n) - A006480(n\2)*A006480((n+1)\2) \\ Charles R Greathouse IV, Oct 20 2016
Comments