cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 106 results. Next

A248658 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^(2*k).

Original entry on oeis.org

1, 1, 1, 2, 9, 28, 66, 153, 433, 1345, 3952, 10991, 30954, 90988, 271845, 804153, 2361457, 6979690, 20842285, 62493914, 187274712, 561448399, 1688263179, 5093148285, 15393417178, 46570446829, 141063389488, 427979185898, 1300470246165, 3956367018001, 12048354848013, 36728336040306
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2014

Keywords

Comments

Limit_{n->oo} a(n)/a(n+1) = 1 - t = t^3 = 0.3176721961... where t = ((sqrt(93)+9)/18)^(1/3) - ((sqrt(93)-9)/18)^(1/3).
Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - (x*y*z)^3). - Ilya Gutkovskiy, Apr 23 2025

Examples

			G.f. A(x) = 1 + x + x^2 + 2*x^3 + 9*x^4 + 28*x^5 + 66*x^6 + 153*x^7 +...
which equals the series:
A(x) = 1/(1-x-x^3) + 3!/1!^3*x^4/(1-x-x^3)^4 + 6!/2!^3*x^8/(1-x-x^3)^7 + 9!/3!^3*x^12/(1-x-x^3)^10 + 12!/4!^3*x^16/(1-x-x^3)^13 +...
The g.f. also equals the series:
A(x) = 1 +
x*(1 + x^2) +
x^2*(1 + 2^3*x^2 + x^4) +
x^3*(1 + 3^3*x^2 + 3^3*x^4 + x^6) +
x^4*(1 + 4^3*x^2 + 6^3*x^4 + 4^3*x^6 + x^8) +
x^5*(1 + 5^3*x^2 + 10^3*x^4 + 10^3*x^6 + 5^3*x^8 + x^10) +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-2*k,k]^3,{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2014 *)
  • PARI
    {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^3*x^(2*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n,x^(4*m)/(1-x-x^3 +x*O(x^n))^(3*m+1)*(3*m)!/(m!)^3), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n\3, binomial(n-2*k, k)^3)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: A(x) = Sum_{n>=0} (3*n)!/(n!)^3 * x^(4*n) / (1-x-x^3)^(3*n+1).
a(n) = Sum_{k=0..[n/3]} C(n-2*k,k)^3.
G.f.: A(x) = G( x^4/(1-x-x^3)^3 )/(1-x-x^3) where G(x) satisfies:
* G(x^3) = G( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x) and G(x) is the g.f. of A006480.

A318107 Triangle read by rows: T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!).

Original entry on oeis.org

1, 6, 1, 90, 24, 1, 1680, 630, 60, 1, 34650, 16800, 2520, 120, 1, 756756, 450450, 92400, 7560, 210, 1, 17153136, 12108096, 3153150, 369600, 18900, 336, 1, 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1, 9465511770, 8779605120, 3259095840, 617512896, 63063000, 3363360, 83160, 720, 1
Offset: 0

Views

Author

Gheorghe Coserea, Sep 18 2018

Keywords

Comments

Diagonal of rational function R(x,y,z,t) = 1/(1 - (x + y + z + t*x*y*z)) with respect to x,y,z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t).
Annihilating differential operator: x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6).

Examples

			A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0]        [1]        [2]        [3]       [4]      [5]    [6]  [7]
[0] 1;
[1] 6,         1;
[2] 90,        24,        1;
[3] 1680,      630,       60,        1;
[4] 34650,     16800,     2520,      120,      1;
[5] 756756,    450450,    92400,     7560,     210,     1;
[6] 17153136,  12108096,  3153150,   369600,   18900,   336,   1;
[7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1;
[8] ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!);
    concat(vector(10, n, vector(n, k, T(n-1, k-1))))
    /* test:
    P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
      return(a);
    };
    apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
    };
    \\ diagonal property:
    x='x; y='y; z='z; t='t;
    diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x,y,z]) == vector(11, n, P(n-1))
    \\ annihilating diffop:
    y = Ser(vector(101, n, P(n-1)), 'x);
    p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x  - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6);
    0 == apply_diffop(p, y)
    */

Formula

Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A000172(n) = P_n(-4), A318108(n) = P_n(-3), A318109(n) = P_n(-2), A124435(n) = P_n(-1), A006480(n) = P_n(0), A081798(n) = P_n(1).
G.f. y = Sum_{n>=0} P_n(t)*x^n satisfies:
0 = x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*y'' + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*y' + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6)*y.

A338075 Diagonal terms in the expansion of (1+x*y*z)/(1-x-y-z).

Original entry on oeis.org

1, 7, 96, 1770, 36330, 791406, 17909892, 416226096, 9864584730, 237338943270, 5778870222840, 142077992254380, 3521258757984240, 87862829835387600, 2205050763983594400, 55615552451285359680, 1408840444191389714010, 35825204161237194511830, 914089586182634239686000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 22 2020

Keywords

Comments

Expand the rational function (1+x*y*z)/(1-x-y-z) as Sum_i Sum_j Sum_k c(i,j,k)*x^i*y^j*z^k; a(n) = c(n,n,n).
If the numerator is changed to 1, we get A006480.
Suggested by Christol's Conjecture (see reference).

References

  • Abdelaziz, Youssef, C. Koutschan, and J. M. Maillard. "On Christol’s conjecture." Journal of Physics A: Mathematical and Theoretical 53.20 (2020): 205201; arXiv:1912.10259.

Crossrefs

Other examples arising from diagonal terms of multivariate g.f.s: A000172, A006480, A338076.

Programs

  • Maple
    N:= 25: # for a(0)..a(N)
    F:=  (1+x*y*z)/(1-x-y-z):
    S1:= series(F, x, N+1):
    L1:= [seq(coeff(S1, x, i), i=0..N)]:
    L2:= [seq(coeff(series(L1[i+1], y, i+1), y, i), i=0..N)]:
    seq(coeff(series(L2[i+1], z, i+1), z, i), i=0..N); # Robert Israel, Oct 25 2020
  • Mathematica
    nmax = 20; Flatten[{1, Table[Coefficient[Series[(1 + x*y*z)/(1 - x - y - z), {x, 0, n}, {y, 0, n}, {z, 0, n}], x^n*y^n*z^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *)
  • PARI
    {a(n) = if(n==0, 1, (3*(n-1))!/(n-1)!^3+(3*n)!/n!^3)} \\ Seiichi Manyama, Oct 31 2020

Formula

Conjectures from Robert Israel, Oct 25 2020: (Start)
G.f.: (x + 1)*LegendreP(-1/3, 1 - 54*x).
(-27*n^2 - 27*n - 6)*a(n + 1) + (-53*n^2 - 214*n - 173)*a(n + 2) + (-25*n^2 - 179*n - 319)*a(n + 3) + (n^2 + 8*n + 16)*a(n + 4) = 0. (End)
a(n) = (28*n^2 - 27*n + 6) * (3*n)! / (3 * (3*n - 1) * (3*n - 2) * n!^3). - Vaclav Kotesovec, Oct 28 2020
a(n) = A006480(n-1) + A006480(n) for n > 0. - Seiichi Manyama, Oct 31 2020

Extensions

More terms from Vaclav Kotesovec, Oct 23 2020

A361031 a(n) = (3^3)*(1*2*4*5*7*8*10*11)*(3*n)!/(n!*(n+4)!^2).

Original entry on oeis.org

11550, 2772, 4620, 15840, 81675, 550550, 4492488, 42325920, 446185740, 5148297000, 63985977000, 846321189120, 11802213457650, 172255143129300, 2615726247519000, 41127042052404000, 666874986879730860, 11114583114662181000, 189866473537245687000, 3316382259894423720000
Offset: 0

Views

Author

Peter Bala, Mar 01 2023

Keywords

Comments

Row 3 of A361027.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that 840*A000984(n) is divisible by (n + 1)*(n + 2)*(n + 3)*(n + 4) and the result 840*(2*n)!/(n!*(n+4)!) is the super ballot number A348893(n). Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that 6652800 * A006480(n) is divisible by ((n + 1)*(n + 2)*(n + 3)*(n + 4))^2.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 11550 else
    3*(3*n-1)*(3*n-2)/(n+4)^2*a(n-1) end if; end proc:
    seq(a(n), n = 0..20);

Formula

a(n) = (3^3)*(1*2*4*5*7*8*10*11)/((n+1)*(n+2)*(n+3)*(n+4))^2 * (3*n)!/n!^3.
a(n) = (1/3)*(1*2*4*5*7*8*10*11) * A006480(n+4)/((3*n + 1)*(3*n + 2)*(3*n + 4)* (3*n + 5)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)), where A006480(n) = (3*n)!/n!^3.
a(n) = (1/3)*27^(n+4)*binomial(10/3, n+4)*binomial(11/3, n+4).
a(n) = (1/7)*A348893(n)*A361039(n). It can be shown from this that a(n) is always an integer.
a(n) ~ sqrt(3)*3326400*(27^n)/(Pi*n^9).
P-recursive: (n + 4)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 11550.
The o.g.f. A(x) satisfies the differential equation x^2*(1 - 27*x)*A''(x) + x*(9 - 54*x)*A'(x) + (16 - 6*x)*A(x) - 184800 = 0, with A(0) = 11550 and A'(0) = 2772.

A361716 a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n,k)^2*binomial(n-1,k).

Original entry on oeis.org

0, 1, -3, -8, 45, 126, -840, -2400, 17325, 50050, -378378, -1100736, 8576568, 25069968, -199536480, -585307008, 4732755885, 13919870250, -113936715750, -335813478000, 2775498395670, 8194328596740, -68263497731520, -201822515032320
Offset: 0

Views

Author

Peter Bala, Mar 23 2023

Keywords

Comments

Conjecture: the supercongruence a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) holds for all primes p >= 5 and positive integers n and k.

Crossrefs

Programs

  • Maple
    seq(add((-1)^k*binomial(n,k)^2*binomial(n-1,k), k = 0..n-1), n = 0..20);
  • Mathematica
    A361716[n_]:=Sum[(-1)^k*Binomial[n,k]^2Binomial[n-1,k],{k,0,n-1}];Array[A361716,30,0] (* Paolo Xausa, Oct 06 2023 *)
  • PARI
    a(n) = sum(k = 0, n-1, (-1)^k*binomial(n,k)^2*binomial(n-1,k)); \\ Michel Marcus, Mar 26 2023
    
  • Python
    from math import comb
    def A361716(n): return (sum(comb(n,k)**3*k if k&1 else -comb(n,k)**3*k for k in range(n+1)))//(n if n&1 else -n) if n else 0 # Chai Wah Wu, Mar 27 2023

Formula

a(n) = Sum_{k = 0..n} (-1)^(n+k) * (k/n) * binomial(n,k)^3.
a(2*n) = (-1)^n * (1/2) * (3*n)!/n!^3 for n >= 1; a(2*n+1) = (-1)^n * (3*n+1)/(2*n+1) * (3n)!/n!^3.
a(2*n) = (1/2)*A245086(2*n) = (1/2)*(-1)^n*A006480(n) for n >= 1.
a(2*n+1) = A361710(2*n+1) = A361711(2*n+1).
a(n) = hypergeom([1 - n, - n, - n], [1, 1], 1) for n >= 1.
P-recursive: n^2*(n-1)*(6*n^2-20*n+17)*a(n) = -( 6*(3*n^2-6*n+2)*(n-1)*a(n-1) + (3*n-6)*(3*n-5)*(3*n-4)*(6*n^2-8*n+3)*a(n-2) ).
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(3*n,n-k)*binomial(n+k,k)^2 for n >= 1.
a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n,k)*binomial(n+k,n)*binomial(2*n-k-1,n). - Peter Bala, Sep 13 2023

A364507 a(n) = (5*n)!*(4*n)! / ((3*n)!^2 * (2*n)! * n!).

Original entry on oeis.org

1, 40, 5880, 1101100, 229265400, 50678855040, 11641642112100, 2746924727976000, 661097260785195000, 161538994454795003200, 39949572934939198410880, 9976687616280042928424700, 2511716999955421326631644900, 636662322699394050738883008000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 2 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 2746924727976000 - 40 = (2^3)*5*(7^4)*28601881799 == 0 (mod 7^4).
a(11) - a(1) = 9976687616280042928424700 - 40 = (2^2)*5*(11^3)*18397*3568463* 5708869513 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (5*n)!*(4*n)!*(2*n)! / ((3*n)!^2 * (2*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364507[n_]:=(5n)!(4n)!/((3n)!^2(2n)!n!);Array[A364507,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(4*n, 2*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity, Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (20/9)*(4*n-1)*(4*n-3)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)/((3*n-1)^2*(3*n-2)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(10)/(6*Pi*n), where c = (2^6)*(5^5)/(3^6).
a(n) = [x^n] G(x)^(20*n), where the power series G(x) = 1 + 2*x + 69*x^2 + 5647*x^3 + 618860*x^4 + 79241349*x^5 + 11177111981*x^6 + 1684171189810*x^7 + 266238907746252*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^20, where the power series F(x) = 1 + 2*x + 149*x^2 + 18647*x^3 + 2913620*x^4 + 515276389*x^5 + 98628630997*x^6 + 19944410220744*x^7 + 4199273746072180*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Aug 04 2023: the conjecture follows from Meštrović. equation 39].
a(n) = binomial(4*n,n)*binomial(5*n,2*n). - Christian Krause, Aug 03 2023

A364508 a(n) = (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!).

Original entry on oeis.org

1, 350, 594594, 1299170600, 3164045050530, 8188909171581600, 22035578229399735000, 60924423899585957558848, 171839010049825493742617250, 492149504510899056782561257748, 1426695143534668869395862598229344, 4176678405144148418744441910948978000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 3 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 60924423899585957558848 - 350 = 2*(7^4)*12687301936606821649 == 0 (mod 7^4).
a(11) - a(1) = 4176678405144148418744441910948978000 - 350 = 2*(5^2)*7*(11^3)* 29*139*1181*1883311859633620981885519 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (7*n)!*(6*n)!*(2*n)! / ((4*n)!^2 * (3*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364508[n_]:=(7n)!(6n)!(2n)!/((4n)!^2(3n)!^2n!);Array[A364508,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(6*n, 3*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (7/4)*(6*n-1)*(6*n-5)*(7*n-1)*(7*n-2)*(7*n-3)*(7*n-4)*(7*n-5)*(7*n-6)/((3*n-1)*(3*n-2)*(4*n-1)^2*(4*n-3)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(21)/(12*Pi*n), where c = (7^7)/(2^8).
a(n) = [x^n] G(x)^(14*n), where the power series G(x) = 1 + 25*x + 12798*x^2 + 13543850*x^3 + 18933663145*x^4 + 30733263922830*x^5 + 54771428143877503*x^6 + 104061045049532102971*x^7 + 207134582792235253663131*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^14, where the power series F(x) = 1 + 25*x + 21548*x^2 + 31466125*x^3 + 57506245907*x^4 + 119069165444705*x^5 + 266966985031172547*x^6 + 632553825380957995891*x^7 + 1560815989686060202098169*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since a(n) = binomial(7*n, 3*n)*binomial(6*n, 3*n) *binomial(2*n, n)/binomial(4*n, n)].

A364511 a(n) = (6*n)!*(5*n)!*(2*n)! / ((4*n)!^2 * (3*n)! * n!^2).

Original entry on oeis.org

1, 50, 8910, 2011100, 503909070, 133954543800, 36992598142500, 10491379251679040, 3034472729231379150, 891028813210575018980, 264787855164104281785160, 79455812929030151249454000, 24035311050907120054564683300, 7320107028326385998504601648000
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Comments

Row 4 of A364509.

Crossrefs

Programs

  • Maple
    seq((6*n)!*(5*n)!*(2*n)! / ((4*n)!^2 * (3*n)! * n!^2), n = 0..15);
  • Mathematica
    A364511[n_]:=(6n)!(5n)!(2n)!/((4n)!^2(3n)!n!^2);Array[A364511,15,0] (* Paolo Xausa, Oct 05 2023 *)

Formula

a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^2 * binomial(6*n, 3*n+i).
Compare with Dixon's identity: Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = (-1)^n*binomial(6*n,2*n) * hypergeom([-2*n, -2*n, -4*n], [1, 2*n+1], 1).
P-recursive: a(n) = (15/4)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*(6*n-1)*(6*n-5)/((4*n-1)^2*(4*n-3)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(5)/(4*Pi*n), where c = (3^3)*(5^5)/(2^8).
a(n) = [x^n] G(x)^(10*n), where the power series G(x) = 1 + 5*x + 208*x^2 + 19960*x^3 + 2580710*x^4 + 390721786*x^5 + 65243160516*x^6 + 11646611942100*x^7 + 2182248792056787*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^10, where the power series F(x) = 1 + 5*x + 458*x^2 + 69285*x^3 + 13037740*x^4 + 2773287786*x^5 + 638122182196*x^6 + 155077758079485*x^7 + 39234250338228617*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since a(n) = binomial(6*n, 3*n)*binomial(5*n, n)* binomial(2*n, n)/binomial(4*n, n)].
a(n) = (-1)^n * [x^(4*n)] (1 - x)^(8*n)*Legendre_P(2*n, (1 + x)/(1 - x)). - Peter Bala, Aug 14 2023

A367567 a(n) = Product_{k=0..n} (3*k)! / k!^3.

Original entry on oeis.org

1, 6, 540, 907200, 31434480000, 23788231346880000, 408042767492495815680000, 162838835029822082951032012800000, 1541352909587869227178909850805190656000000, 351233376660297011570511252132131832794456064000000000, 1949695346852822356399298814748829537555898997004605685760000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k)!/k!^3, {k, 0, n}], {n, 0, 10}]
    Table[Product[Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]

Formula

a(n) = Product_{k=0..n} binomial(3*k,k) * binomial(2*k,k).
a(n) = A268504(n) / A000178(n)^3.
a(n) = A268504(n) / A061719(n).
a(n) = A007685(n) * A268196(n).
a(n) ~ A^(8/3) * Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36) * exp(n - 2/9) / (n^(n + 13/18) * (2*Pi)^(n + 7/6)), where A is the Glaisher-Kinkelin constant A074962.

A071803 Number of paths in the lattice [0..n] X [0..n] X [0..n] which do not pass through the point (floor(n/2), floor(n/2), floor(n/2)). Number of paths through a lattice containing a "hole".

Original entry on oeis.org

54, 1140, 26550, 605556, 14330736, 340860960, 8264889270, 201651836100, 4978317147804, 123546256876224, 3090501687886704, 77632745316063840, 1961313438507566400, 49717549985405892480, 1265749551338006549430, 32312920048897640674500, 827693426702217868006500
Offset: 2

Views

Author

T. D. Noe, Jun 06 2002

Keywords

Crossrefs

Programs

  • Maple
    g:= hypergeom([1/6,1/3,2/3,5/6],[ 1/2,1/2,1], 729*x^2) - hypergeom([1/3,1/3,2/3,2/3],[ 1,1,1], 729*x^2) + 6*x*( hypergeom([2/3,5/6,7/6,4/3],[ 1,3/2,3/2], 729*x^2) - hypergeom([1/3,2/3,4/3,5/3],[ 1,2,2], 729*x^2)):
    S:= series(g,x,101):
    seq(coeff(S,x,j),j=2..100); # Robert Israel, Oct 20 2016
  • Mathematica
    Table[Factorial[3n]/Factorial[n]^3 - Factorial[3Floor[n/2]]Factorial[3 Ceiling[n/2]]/Factorial[Floor[n/2]]^3/Factorial[Ceiling[n/2]]^3, {n, 2, 20}]
    Rest[Rest[CoefficientList[Series[HypergeometricPFQ[{1/6, 1/3, 2/3, 5/6}, {1/2, 1/2, 1}, 729 x^2] - HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1, 1, 1}, 729 x^2] + 6 x (HypergeometricPFQ[{2/3, 5/6, 7/6, 4/3}, {1, 3/2, 3/2}, 729 x^2] - HypergeometricPFQ[{1/3, 2/3, 4/3, 5/3}, {1, 2, 2}, 729 x^2]), {x, 0, 20}], x]]] (* Benedict W. J. Irwin, Oct 20 2016 *)
  • PARI
    A006480(n)=(3*n)!/n!^3
    a(n) = A006480(n) - A006480(n\2)*A006480((n+1)\2) \\ Charles R Greathouse IV, Oct 20 2016

Formula

a(n) = s(3, n) - s(3, floor(n/2)) * s(3, ceiling(n/2)), where s(3,n) = A006480(n).
G.f.: 4F3(1/6,1/3,2/3,5/6; 1/2,1/2,1; 729*x^2) - 4F3(1/3,1/3,2/3,2/3; 1,1,1; 729*x^2) + 6*x*( 4F3(2/3,5/6,7/6,4/3; 1,3/2,3/2; 729*x^2) - 4F3(1/3,2/3,4/3,5/3; 1,2,2; 729*x^2)). - Benedict W. J. Irwin, Oct 20 2016
Previous Showing 61-70 of 106 results. Next