cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A337799 Number of compositions (ordered partitions) of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 2, 15, 2780, 94947913, 5470124262136760, 5979009355803053742719666641, 1610158754567753309521653012201612266212334009, 1566217729562552701894041200097975651072376485590145959656670312797530
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(3) = 15 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4], [1, 1, 4, 4], [4, 1, 1, 1, 1, 1, 1], [1, 4, 1, 1, 1, 1, 1], [1, 1, 4, 1, 1, 1, 1], [1, 1, 1, 4, 1, 1, 1], [1, 1, 1, 1, 4, 1, 1], [1, 1, 1, 1, 1, 4, 1], [1, 1, 1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] 1 / (1 - Sum_{k=1..n} x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A100189 Equatorial structured meta-anti-diamond numbers, the n-th number from an equatorial structured n-gonal anti-diamond number sequence.

Original entry on oeis.org

1, 6, 27, 92, 245, 546, 1071, 1912, 3177, 4990, 7491, 10836, 15197, 20762, 27735, 36336, 46801, 59382, 74347, 91980, 112581, 136466, 163967, 195432, 231225, 271726, 317331, 368452, 425517, 488970, 559271, 636896
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A000578, A096000, A051673, A005915, A100186, A100187 - "equatorial" structured anti-diamonds; A100188 - "polar" structured meta-anti-diamond numbers; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(4*n^4-12*n^3+20*n^2-6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
  • Mathematica
    Table[(4n^4-12n^3+20n^2-6n)/6,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,27,92,245},40] (* Harvey P. Dale, Jul 05 2011 *)

Formula

a(n) = (1/6)*(4*n^4-12*n^3+20*n^2-6*n).
a(1)=1, a(2)=6, a(3)=27, a(4)=92, a(5)=245, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Jul 05 2011
G.f.: x*(1+x)*(1+7*x^2)/(1-x)^5. - Colin Barker, Jan 19 2012

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).

A336091 Number of ordered ways of writing the n-th n-gonal pyramidal number as a sum of n n-gonal pyramidal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 2, 3, 10, 5, 246, 1519, 19678, 74601, 690490, 21026621, 301528272, 4397123315, 71221546592, 1001245733295, 19276579678736, 368677642975493, 6820451221691646, 136000924000323691, 3069656935024721420, 69646109074231173897, 1641880679174919030100
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2020

Keywords

Examples

			a(3) = 3 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10, 0, 0], [0, 10, 0] and [0, 0, 10].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k (n - 2) - n + 5)/6), {k, 0, n}]^n, {x, 0, n (n + 1) (n^2 - 3 n + 5)/6}], {n, 0, 22}]

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A336303 Number of ordered ways of writing the n-th n-gonal pyramidal number as a sum of n nonzero n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 0, 0, 6, 0, 180, 630, 1120, 36288, 441000, 6579870, 59734620, 1252872192, 13668490836, 162131872695, 2971275208720, 52783774330940, 1334562954639156, 16933262255752698, 406499325562503480, 8838644883526856832, 190698441426122689290
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2020

Keywords

Examples

			a(4) = 6 because the fourth square pyramidal number is 30 and we have [14, 14, 1, 1], [14, 1, 14, 1], [14, 1, 1, 14], [1, 14, 14, 1], [1, 14, 1, 14] and [1, 1, 14, 14].
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[SeriesCoefficient[Sum[x^(k (k + 1) (k (n - 2) - n + 5)/6), {k, 1, n}]^n, {x, 0, n (n + 1) (n^2 - 3 n + 5)/6}], {n, 1, 22}]]

Formula

a(n) = [x^p(n,n)] (Sum_{k=1..n} x^p(n,k))^n, where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A366204 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * (n-3)^k.

Original entry on oeis.org

1, 3, 22, 305, 6873, 223300, 9609372, 517122117, 33450100420, 2528420918595, 218708219876094, 21304932729509468, 2307805461194581390, 275157252809857575960, 35806664475402303854328, 5049845899886455033320237, 767208489677203200554103660, 124917404793477227061928480153
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 04 2023

Keywords

Comments

a(n) is the coefficient of x^n in expansion of series reversion of g.f. for n-gonal pyramidal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] (n - 3)^k, {k, 0, n - 1}], {n, 1, 18}]
    Table[Binomial[4 n, n - 1] Hypergeometric2F1[1 - n, n, 3 n + 2, 3 - n]/n, {n, 1, 18}]
    Table[SeriesCoefficient[InverseSeries[Series[x (1 - (n - 3) x)/(1 + x)^4, {x, 0, n}], x], {x, 0, n}], {n, 1, 18}]

Formula

a(n) = [x^n] Series_Reversion( x * (1 - (n - 3) * x) / (1 + x)^4 ).

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020

A301973 a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.

Original entry on oeis.org

0, 1, 4, 15, 50, 140, 336, 714, 1380, 2475, 4180, 6721, 10374, 15470, 22400, 31620, 43656, 59109, 78660, 103075, 133210, 170016, 214544, 267950, 331500, 406575, 494676, 597429, 716590, 854050, 1011840, 1192136, 1397264, 1629705, 1892100, 2187255, 2518146, 2887924, 3299920, 3757650, 4264820
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number).

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41]

Formula

O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6.
E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24.
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

A377729 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly 2 ways.

Original entry on oeis.org

19, 90, 162, 299, 509, 816, 1248, 1837, 2619, 3634, 4926, 6543, 8537, 10964, 13884, 17361, 21463, 26262, 31834, 38259, 45621, 54008, 63512, 74229, 86259, 99706, 114678, 131287, 149649, 169884, 192116, 216473, 243087, 272094, 303634, 337851, 374893, 414912, 458064, 504509
Offset: 3

Views

Author

Ilya Gutkovskiy, Nov 05 2024

Keywords

Comments

From David A. Corneth, Nov 06 2024: (Start)
a(n) <= (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. Proof:
A polygonal number is of the form P(m, n) = m/2 * ((n - 2) * m - n + 4).
We have P(n - 5, n) + P(n - 4, n) + P(n, n) = P(n - 6, n) + P(n - 2, n) + P(n - 1, n) = (3*n^3 - 18*n^2 + 21*n) / 2.
This lets us find the upper bound on a(n) by making two lists from 1 through n + 3. From one of them we remove n-2, n-1 and n + 3 and from the other we remove n-3, n+1 and n+2. The sum for remaining polygonal numbers is the same giving an upper bound on a(n) which turns out to be (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 (End)

Examples

			a(3) = 19 = 1 + 3 + 15 = 3 + 6 + 10.
a(4) = 90 = 1^2 + 2^2 + 6^2 + 7^2 = 1^2 + 3^2 + 4^2 + 8^2.
		

Crossrefs

Formula

From David A. Corneth, Nov 06 2024: (Start)
a(n) >= A006484(n).
Conjecture: a(n) = (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. (End)
Conjectured g.f.: x^3*(19 - 5*x - 98*x^2 + 199*x^3 - 171*x^4 + 72*x^5 - 12*x^6) / (1 - x)^5.

Extensions

a(12)-a(36) from Michael S. Branicky, Nov 06 2024
More terms from David A. Corneth, Nov 10 2024
Previous Showing 11-19 of 19 results.