cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A182931 Generalized Bell numbers; square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 5, 1, 0, 1, 15, 1, 0, 0, 1, 52, 4, 1, 0, 0, 1, 203, 11, 1, 0, 0, 0, 1, 877, 41, 1, 1, 0, 0, 0, 1, 4140, 162, 11, 1, 0, 0, 0, 0, 1, 21147, 715, 36, 1, 1, 0, 0, 0, 0, 1, 115975, 3425, 92, 1, 1, 0, 0, 0, 0, 0, 1, 678570, 17722, 491, 36, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Peter Luschny, Apr 05 2011

Keywords

Examples

			Array starts:
[k=      1       2       3       4       5]
[n=0]    1,      1,      1,      1,      1,
[n=1]    1,      0,      0,      0,      0,
[n=2]    2,      1,      0,      0,      0,
[n=3]    5,      1,      1,      0,      0,
[n=4]   15,      4,      1,      1,      0,
[n=5]   52,     11,      1,      1,      1,
[n=6]  203,     41,     11,      1,      1,
[n=7]  877,    162,     36,      1,      1,
[n=8] 4140,    715,     92,     36,      1,
   A000110,A000296,A006505,A057837,A057814, ...
		

Crossrefs

Row sums are A097147 for n >= 1.

Programs

  • Maple
    egf := k -> exp(exp(x)*(1-GAMMA(k,x)/GAMMA(k)));
    T := (n,k) -> n!*coeff(series(egf(k),x,n+1),x,n):
    seq(print(seq(T(n,k),k=1..8)),n=0..8);
  • Mathematica
    egf[k_] := Exp[Exp[x] (1 - Gamma[k, x]/Gamma[k])];
    T[n_, k_] := n! SeriesCoefficient[egf[k], {x, 0, n}];
    Table[T[n-k+1, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 13 2019 *)

Formula

E.g.f.: exp(exp(x)*(1-Gamma(k,x)/Gamma(k))); Gamma(k,x) the incomplete Gamma function.

A282988 Triangle of partitions of an n-set into boxes of size >= m.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 26 2017

Keywords

Examples

			Triangle T(n,m) begins:
    1;
    2,   1;
    5,   1,   1;
   15,   4,   1,   1;
   52,  11,   1,   1,   1;
  203,  41,  11,   1,   1,   1;
  877, 162,  36,   1,   1,   1,   1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, add(
          T(n-j, k)*binomial(n-1, j-1), j=k..n))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *)
  • Maxima
    T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m);

Formula

T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m).
E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k).

A347434 E.g.f.: exp( exp(x) * (exp(x) - 1 - x - x^2 / 2) ).

Original entry on oeis.org

1, 0, 0, 1, 5, 16, 52, 274, 1990, 14354, 99704, 730225, 6061013, 56151330, 551040830, 5597109717, 59324775741, 664973687438, 7891158217876, 98253448977890, 1273082291906394, 17124091446383666, 239333235895599762, 3476600533730954761, 52394273274018321421
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2021

Keywords

Comments

Exponential transform of A002662.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-j*(j+1)/2-1), j=1..n))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - 1 - k (k + 1)/2) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002662(k) * a(n-k).

A365893 Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+3) / (5*k+3)! ).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 10, 0, 1, 280, 0, 165, 15400, 1, 30030, 1401400, 6995, 6806800, 190590401, 6506835, 1939938000, 36212380820, 4940624150, 687126039601, 9163671323015, 3761116975000, 297754623925175, 2982764271647875, 3067236941769001
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\5, x^(5*k+3)/(5*k+3)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/5)} binomial(n-1,5*k+2) * a(n-5*k-3).

A352900 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.

Original entry on oeis.org

0, 0, 0, 7, 28, 79, 460, 2486, 11209, 59787, 361777, 2167635, 13577211, 91919186, 650059294, 4761980740, 36508824672, 292116858616, 2424047807182, 20847409357919, 185754041370693, 1711253802075941, 16272637412753211, 159561718074359537, 1611599794862761838, 16747401536440092104
Offset: 3

Views

Author

Janaka Rodrigo, Apr 07 2022

Keywords

Examples

			For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles:
  {1,3,4}, {5,6,2}
  {4,5,1}, {2,3,6}
  {3,4,6}, {1,2,5}
  {2,3,5}, {1,4,6}
  {1,2,4}, {5,6,3}
  {1,6,3}, {5,4,2}
  {1,3,5}, {2,4,6}
		

Crossrefs

Programs

  • PARI
    T2(n,k) = if (n<3, 0, if (k==1, 1, k*T2(n-1,k) + binomial(n-1,2)*T2(n-3,k-1))); \\ A059022
    a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n,k))); \\ A006505
    a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997
    a(n) =  a5(n) - a7(n); \\ Michel Marcus, Apr 09 2022

Formula

a(n) = A006505(n) - A114997(n).
a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.
T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.

Extensions

More terms from Michel Marcus, Apr 09 2022
Previous Showing 11-15 of 15 results.