A182931 Generalized Bell numbers; square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 1.
1, 1, 1, 2, 0, 1, 5, 1, 0, 1, 15, 1, 0, 0, 1, 52, 4, 1, 0, 0, 1, 203, 11, 1, 0, 0, 0, 1, 877, 41, 1, 1, 0, 0, 0, 1, 4140, 162, 11, 1, 0, 0, 0, 0, 1, 21147, 715, 36, 1, 1, 0, 0, 0, 0, 1, 115975, 3425, 92, 1, 1, 0, 0, 0, 0, 0, 1, 678570, 17722, 491, 36, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Array starts: [k= 1 2 3 4 5] [n=0] 1, 1, 1, 1, 1, [n=1] 1, 0, 0, 0, 0, [n=2] 2, 1, 0, 0, 0, [n=3] 5, 1, 1, 0, 0, [n=4] 15, 4, 1, 1, 0, [n=5] 52, 11, 1, 1, 1, [n=6] 203, 41, 11, 1, 1, [n=7] 877, 162, 36, 1, 1, [n=8] 4140, 715, 92, 36, 1, A000110,A000296,A006505,A057837,A057814, ...
Links
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- Peter Luschny, Set partitions
Crossrefs
Programs
-
Maple
egf := k -> exp(exp(x)*(1-GAMMA(k,x)/GAMMA(k))); T := (n,k) -> n!*coeff(series(egf(k),x,n+1),x,n): seq(print(seq(T(n,k),k=1..8)),n=0..8);
-
Mathematica
egf[k_] := Exp[Exp[x] (1 - Gamma[k, x]/Gamma[k])]; T[n_, k_] := n! SeriesCoefficient[egf[k], {x, 0, n}]; Table[T[n-k+1, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 13 2019 *)
Formula
E.g.f.: exp(exp(x)*(1-Gamma(k,x)/Gamma(k))); Gamma(k,x) the incomplete Gamma function.
Comments