cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A185878 Accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 11, 10, 3, 24, 28, 18, 4, 45, 60, 51, 28, 5, 76, 110, 108, 80, 40, 6, 119, 182, 195, 168, 115, 54, 7, 176, 280, 318, 300, 240, 156, 70, 8, 249, 408, 483, 484, 425, 324, 203, 88, 9, 340, 570, 696, 728, 680, 570, 420, 256, 108, 10, 451, 770, 963, 1040, 1015, 906, 735, 528, 315, 130, 11, 584, 1012, 1290, 1428, 1440, 1344, 1162, 920, 648, 380, 154, 12
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ...
See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
  1,  4, 11,  24,  45, ...
  2, 10, 28,  60, 110, ...
  3, 18, 51, 108, 195, ...
  4, 28, 80, 168, 300, ...
  ...
		

Crossrefs

Row 1 to 3: A006527, A006331, A064043.
Column 1 to 5: A000027, A028552, A140677, 12*A000096, 5*A130861.

Programs

  • Mathematica
    f[n_, k_] := k*n*(2*k^2 - 3*k + 3*k*n - 3*n + 7)/6; Table[f[n - k + 1, k], {n,10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = k*n*(2*k^2 -3*k +3*k*n -3*n +7)/6, k>=1, n>=1.

A227182 Simple self-inverse permutation of natural numbers: List each block of n^2 - n + 1 numbers from ((n-1)^3 + 2*(n-1))/3 + 1 to (n^3 + 2*n)/3 in reverse order.

Original entry on oeis.org

0, 1, 4, 3, 2, 11, 10, 9, 8, 7, 6, 5, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46
Offset: 0

Views

Author

Antti Karttunen, Jul 04 2013

Keywords

Comments

In other words, after zero, list each block of A002061(n) numbers from A116731(n) to A006527(n) in reverse order.

Crossrefs

Programs

Formula

a(n) = A006527(A227177(n)) - A227179(n).

A129687 A129686 * A007318.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 2, 6, 7, 4, 1, 2, 8, 13, 11, 5, 1, 2, 10, 21, 24, 16, 6, 1, 2, 12, 31, 45, 40, 22, 7, 1, 2, 14, 43, 76, 85, 62, 29, 8, 1, 2, 16, 57, 119, 161, 147, 91, 37, 9, 1, 2, 18, 73, 176, 280, 308, 238, 128, 46, 10, 1, 2, 20, 91, 249, 456
Offset: 0

Views

Author

Gary W. Adamson, Apr 28 2007

Keywords

Comments

Row sums = A084215: (1, 2, 5, 10, 20, 40, 80, ...). A007318 * A129686 = A124725.
From Philippe Deléham, Feb 12 2014: (Start)
Riordan array ((1+x^2)/(1-x), x/(1-x)).
Diagonal sums are A000032(n) - 0^n (cf. A000204).
T(n,0) = A046698(n+1).
T(n+1,1) = A004277(n).
T(n+2,2) = A002061(n+1).
T(n+3,3) = A006527(n+1) = A167875(n).
T(n+4,4) = A006007(n+1).
T(n+5,5) = A081282(n+1). (End)

Examples

			First few rows of the triangle:
  1;
  1,   1;
  2,   2,   1;
  2,   4,   3,   1;
  2,   6,   7,   4,   1;
  2,   8,  13,  11,   5,   1;
  2,  10,  21,  24,  16,   6,   1;
  2,  12,  31,  45,  40,  22,   7,   1;
  2,  14,  43,  76,  85,  62,  29,   8,   1;
  2,  16,  57, 119, 161, 147,  91,  37,   9,   1;
  ...
		

Crossrefs

Formula

A129686 * A007318 (Pascal's Triangle), as infinite lower triangular matrices.
T(n,k) = T(n-1,k) + T(n-1,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 12 2014

Extensions

More terms from Philippe Deléham, Feb 12 2014

A158822 Triangle read by rows, matrix triple product A000012 * A145677 * A000012.

Original entry on oeis.org

1, 3, 1, 6, 3, 2, 10, 6, 5, 3, 15, 10, 9, 7, 4, 21, 15, 14, 12, 9, 5, 28, 21, 20, 18, 15, 11, 6, 36, 28, 27, 25, 22, 18, 13, 7, 45, 36, 35, 33, 30, 26, 21, 15, 8, 55, 45, 44, 42, 39, 35, 30, 24, 17, 9, 66, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Mar 28 2009

Keywords

Examples

			First few rows of the triangle =
   1;
   3,  1;
   6,  3,  2;
  10,  6,  5,  3;
  15, 10,  9,  7,  4;
  21, 15, 14, 12,  9,  5;
  28, 21, 10, 18, 15, 11,  6;
  36, 28, 27, 25, 22, 18, 13,  7;
  45, 36, 35, 33, 30, 26, 21, 15,  8;
  55, 45, 44, 42, 39, 35, 30, 24, 17,  9;
  66, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10;
  78, 66, 65, 63, 60, 56, 51, 45, 38, 30, 21, 11;
  91, 78, 77, 75, 72, 68, 63, 57, 50, 42, 33, 23, 12;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[k==0, Binomial[n+2, 2], (n+1-k)*(n+k)/2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 26 2021 *)
  • Sage
    def A158822(n,k):
        if (k==0): return binomial(n+2, 2)
        else: return (n-k+1)*(n+k)/2
    flatten([[A158822(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 26 2021

Formula

Triangle read by rows, A000012 * A145677 * A000012; where A000012 = an infinite lower triangular matrix: (1; 1,1; 1,1,1; ...), with all 1's.
From G. C. Greubel, Dec 26 2021: (Start)
T(n, k) = (n+1-k)*(n+k)/2 with T(n, 0) = binomial(n+2, 2).
Sum_{k=0..n} T(n, k) = (1/3)*(n+1)*(n^2 + 2*n + 3) = A006527(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = binomial(n+2, 2) + A034828(n+1).
T(n, 1) = A000217(n).
T(n, 2) = A000096(n-1).
T(n, 3) = A055998(n-2).
T(2*n, n) = A134479(n). (End)

Extensions

Definition corrected by Michael Somos, Nov 05 2011

A292022 a(n) = 4*n*(n^2 + 2).

Original entry on oeis.org

12, 48, 132, 288, 540, 912, 1428, 2112, 2988, 4080, 5412, 7008, 8892, 11088, 13620, 16512, 19788, 23472, 27588, 32160, 37212, 42768, 48852, 55488, 62700, 70512, 78948, 88032, 97788, 108240, 119412, 131328, 144012, 157488, 171780, 186912, 202908, 219792, 237588
Offset: 1

Views

Author

Eric W. Weisstein, Sep 07 2017

Keywords

Comments

For n > 1, Wiener index of the 2n-crossed prism graph.

Crossrefs

Programs

  • Mathematica
    Table[4 n (n^2 + 2), {n, 50}]
    LinearRecurrence[{4, -6, 4, -1}, {12, 48, 132, 288}, 20]
    CoefficientList[Series[(12 (1 + x^2))/(-1 + x)^4, {x, 0, 20}], x]

Formula

a(n) = 4*n*(n^2 + 2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 12*x*(1 + x^2)/(-1 + x)^4.
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*x*(3 + 3*x + x^2)*exp(x).
a(n) = 12*A006527(n) = 4*A054602(n) = 3*A217873(n). (End)

A109876 Triangle read by rows: a(n, n) = n! and for 1 <= k < n, a(n, k) = Sum_{i=0..n-1} Product_{j=i+1..i+k} f(j, n), where for x <= y, f(x, y) = x and for x > y, f(x, y) = x-y.

Original entry on oeis.org

1, 3, 2, 6, 11, 6, 10, 24, 50, 24, 15, 45, 120, 274, 120, 21, 76, 252, 720, 1764, 720, 28, 119, 476, 1680, 5040, 13068, 5040, 36, 176, 828, 3520, 12960, 40320, 109584, 40320, 45, 249, 1350, 6750, 29880, 113400, 362880, 1026576, 362880, 55, 340, 2090, 12048
Offset: 1

Views

Author

Amarnath Murthy, Jul 10 2005

Keywords

Comments

The first four columns (excluding the initial term of each) are A000217 (triangular numbers), A006527, A062026 and A062027. The first and third diagonals are both A000142 (factorials). The second diagonal is A000254.
Without the exception for k = n, a(n, n) would be n*n! (A001563(n)). For example, a(3, 3) would be 1*2*3 + 2*3*1 + 3*1*2 instead of 1*2*3. The author's original description did not mention the exception. I guess it didn't make sense to him to add n identical terms. - David Wasserman, Oct 01 2008

Examples

			a(5, 3) = 1*2*3 + 2*3*4 + 3*4*5 + 4*5*1 + 5*1*2 = 120.
		

Crossrefs

Cf. A109877.

Programs

  • PARI
    f(x, y) = if (x > y, x - y, x);
    a(n, k) = if (n == k, n!, sum (i = 0, n - 1, prod (j = i + 1, i + k, f(j, n)))); \\ David Wasserman, Oct 01 2008

Extensions

Edited and extended by David Wasserman, Oct 01 2008

A129312 A minimal 2 X 2 subdeterminant array.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 8, 8, 4, 5, 11, 13, 11, 5, 6, 14, 18, 18, 14, 6, 7, 17, 23, 25, 23, 17, 7, 8, 20, 28, 32, 32, 28, 20, 8, 9, 23, 33, 39, 41, 39, 33, 23, 9, 10, 26, 38, 46, 50, 50, 46, 38, 26, 10, 11, 29, 43, 53, 59, 61, 59, 53, 43, 29, 11, 12, 32, 48, 60, 68, 72, 72, 68, 60
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2007

Keywords

Comments

Given that row 1 and column 1 are the sequence (1,2,3,4,...), T is the array of minimal positive subdeterminants in the sense that for each 2 X 2 submatrix
a b
c d,
d is the least integer for which the resulting
determinant is positive; indeed, the determinant is 1.
T(n,n)=A001844(n).
SUM{T(n,k): k=1,2,...,n}=A081436(n).
When T is written as the triangle
1
2 2
3 5 3
4 8 8 4
5 11 13 11 5, etc.,
the row sums are A006527 and the alternating row sums are 1,0,1,0,1,0,1,0,... (A059841).
The underlying function T is the same as in A244418, but this triangle's rows hold n+k constant, while in A244418, n is held constant on each row, and k <= n.
T(n,k) can be interpreted as a figurate number, with an (n-1) x (k-1) rectangle of dots interleaved with an n x k rectangle. The American flag illustrates T(5,6).

Examples

			Northwest corner:
1 2 3 4 5 6
2 5 8 11 14 17
3 8 13 18 23 28
4 11 18 25 32 39
T(2,2)=5 because 5 is the least positive integer x for which the determinant of the 2 X 2 matrix below is positive:
1 2
2 x
		

Crossrefs

Cf. A244418 (different triangle for the same function T).

Programs

  • Mathematica
    (* Array version: *)
    Grid[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, 12}], k], {n, 12}, {k, 0, 12}]] (* L. Edson Jeffery, Aug 23 2014 *)
    (* Triangle version: *)
    Grid[Table[SeriesCoefficient[Series[(n - k + (n - k - 1)*x)/(1 - x)^2, {x, 0, 12}], k], {n, 12}, {k, 0, n - 1}]] (* L. Edson Jeffery, Aug 23 2014 *)

Formula

T(n,k)=(2n-1)*k-n+1.

Extensions

Connection to A244418 and interpretation as figurate numbers from Allan C. Wechsler, Nov 18 2018

A135184 Triangle read by rows: A000012 * A128229^2 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 5, 11, 7, 1, 5, 11, 19, 9, 1, 5, 11, 19, 29, 11, 1, 5, 11, 19, 29, 41, 13, 1, 5, 11, 19, 29, 41, 55, 15, 1, 5, 11, 19, 29, 41, 55, 71, 17, 1, 5, 11, 19, 29, 41, 55, 71, 89, 19, 1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 21, 1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 23, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 21 2007

Keywords

Comments

Row sums = A006527: (1, 4, 11, 24, 45, 76, ...).

Examples

			First few rows of the triangle:
  1;
  3,  1;
  5,  5,  1;
  5, 11,  7,  1;
  5, 11, 19,  9,  1;
  5, 11, 19, 29, 11,  1;
  5, 11, 19, 29, 41, 13,  1;
  5, 11, 19, 29, 41, 55, 15,  1;
  ...
		

Crossrefs

Extensions

a(19), a(20) corrected and more terms from Georg Fischer, Jun 05 2023

A292185 One-fifth of the rolling arithmetic mean of the fifth powers of the natural numbers taken five at a time.

Original entry on oeis.org

177, 488, 1159, 2460, 4781, 8656, 14787, 24068, 37609, 56760, 83135, 118636, 165477, 226208, 303739, 401364, 522785, 672136, 854007, 1073468, 1336093, 1647984, 2015795, 2446756, 2948697, 3530072, 4199983, 4968204, 5845205, 6842176, 7971051, 9244532, 10676113
Offset: 1

Views

Author

Robert G. Burns, Sep 12 2017

Keywords

Comments

This method can be generalized. Replacing all the fives by any odd positive integer m, and taking m at a time, also gives an integer sequence.
If m is 3 then A006527 (from term 3) and A167875 (from term 2) are retrieved.

Examples

			a(1) = (1^5 + 2^5 + 3^5 + 4^5 +5^5)/25 = (1+32+243+1024+3125)/25 = 4425/25 = 177.
a(2) = (2^5 + 3^5 + 4^5 + 5^5 +6^5 )/25 = (32+243+1024+3125+7776)/25 = 12200/25 = 488.
		

Crossrefs

Programs

  • J
    (m(+/ % #) \ (1+i. 44)^(x: m))%m [m=.5 NB. See http://www.jsoftware.com
    
  • Mathematica
    MovingAverage[Range[40]^5,5]/5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{177,488,1159,2460,4781,8656},40] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    Vec(x*(177 - 574*x + 886*x^2 - 714*x^3 + 301*x^4 - 52*x^5) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Sep 18 2017

Formula

a(n) = ((n^5 + (n+1)^5 + (n+2)^5 + (n+3)^5 + (n+4)^5) /5) /5.
From Colin Barker, Sep 18 2017: (Start)
G.f.: x*(177 - 574*x + 886*x^2 - 714*x^3 + 301*x^4 - 52*x^5) / (1 - x)^6.
a(n) = 6*a(n-1)- 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).
Previous Showing 41-50 of 57 results. Next