cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A038688 Squares that are the sum of the divisors of some number.

Original entry on oeis.org

1, 4, 36, 121, 144, 256, 324, 400, 576, 784, 900, 961, 1024, 1296, 1600, 1764, 1936, 2304, 2704, 2916, 3136, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5776, 6084, 6400, 7056, 7744, 8100, 9216, 9604, 10000, 10404, 10816, 11664, 12544, 12996, 14400
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A000290 and A002191.

Programs

  • Mathematica
    nn = 14400; t = Select[Union[DivisorSigma[1, Range[nn]]], IntegerQ[Sqrt[#]] &]; t = Select[t, # <= nn &] (* T. D. Noe, Sep 04 2013 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(invsigmaNum(k^2) > 0, print1(k^2, ", "))); \\ Amiram Eldar, Aug 12 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = A228061(n)^2. - Amiram Eldar, Aug 12 2024

A048253 a(n) is the number of integers whose sum of divisors is 6^n.

Original entry on oeis.org

1, 1, 1, 5, 11, 18, 30, 48, 85, 148, 250, 415, 669, 1066, 1697, 2635, 4036, 6111, 9137, 13540, 19930, 29098, 42184, 60655, 86598, 122821, 173314, 243469, 340329, 473221, 654779, 901741, 1236668, 1689322, 2298592, 3115200, 4206016, 5658677, 7588039
Offset: 0

Views

Author

Keywords

Examples

			For n=3, sigma(1,k) = 6^3 = 216 for each of 5 integers: 102, 110, 142, 159, and 187, so a(3) = 5.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[1, #] &, 6^8]}, Array[Count[s, 6^#] &, Log[6, Length@ s] + 1, 0]] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = sum(k=1, 6^n, sigma(k)==6^n); \\ Michel Marcus, May 14 2018

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
Edited and extended by Ray Chandler, Sep 01 2010

A126028 Perfect square roots: numbers n such that (sopfr(n)*d(n))^2 = sigma(n) where sopfr = sum of prime factors with multiplicity (A001414), d(n) = number of divisors of n, sigma(n) = sum of divisors of n.

Original entry on oeis.org

22446139, 26116291, 28097023, 30236557, 31090489, 31124341, 49941589, 61137673, 62224039, 66960589, 71334867, 71585139, 82266591, 83045869, 88658031, 92346023, 92837591, 105183961, 114762567, 123563821, 129616270, 130399138, 131494219, 134156197
Offset: 1

Views

Author

Fred Schneider, Dec 14 2006

Keywords

Examples

			n = 22446139 = 31*67*101*107. sopfr(n) = 31+67+101+107 = 306, d(n) = 2^4 = 16, sigma(n) = (31+1)*(67+1)*(101+1)*(107+1) = 23970816, (sopfr(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
		

Crossrefs

Extensions

Clarified and extended by Charles R Greathouse IV, Oct 11 2009
Clarified by Donovan Johnson, Jun 09 2013

A226479 Numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of distinct prime factors of n (A008472) and d(n) = number of divisors of n.

Original entry on oeis.org

22446139, 26116291, 28097023, 30236557, 31090489, 31124341, 39618558, 41628195, 49941589, 51777957, 61137673, 62224039, 66960589, 71096795, 71334867, 71585139, 72304400, 82266591, 83045869, 92346023, 92837591, 105183961, 114762567, 117908994, 123563821
Offset: 1

Views

Author

Donovan Johnson, Jun 09 2013

Keywords

Comments

Suggested by N. J. A. Sloane.

Examples

			n = 22446139 = 31*67*101*107. sopf(n) = 31+67+101+107 = 306. d(n) = 16. (sopf(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
		

Crossrefs

A226480 Squarefree numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of prime factors of n and d(n) = number of divisors of n.

Original entry on oeis.org

22446139, 26116291, 28097023, 30236557, 31090489, 31124341, 49941589, 61137673, 62224039, 66960589, 71334867, 71585139, 82266591, 83045869, 92346023, 92837591, 105183961, 114762567, 123563821, 130399138, 131494219, 134156197, 134867722, 135095767, 136026037
Offset: 1

Views

Author

Donovan Johnson, Jun 09 2013

Keywords

Comments

Suggested by N. J. A. Sloane.

Examples

			n = 22446139 = 31*67*101*107. sopf(n) = 31+67+101+107 = 306. d(n) = 16. (sopf(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
		

Crossrefs

A272405 Numbers n such that sum of the divisors of n is not of the form x^2 + y^2 + z^2 where x, y, z are integers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 25, 32, 38, 48, 59, 64, 75, 91, 96, 99, 114, 125, 128, 130, 135, 158, 166, 169, 177, 192, 196, 203, 205, 209, 221, 239, 242, 251, 256, 268, 273, 283, 290, 315, 324, 347, 358, 365, 367, 375, 378, 379, 384, 387, 390, 392, 403, 422, 423, 427, 443, 445, 460, 474, 476, 493
Offset: 1

Views

Author

Altug Alkan, Apr 29 2016

Keywords

Comments

Numbers n such that sum of the positive divisors of n is the sum of 4 but no fewer nonzero squares.
Prime terms of this sequence are 59, 239, 251, 283, 347, 367, 379, 443, 571, ...
A006532 is a subsequence of complement of this sequence.
Pollack (2011) proved that the complementary sequence has asymptotic density 7/8. Therefore the asymptotic density of this sequence is 1/8. - Amiram Eldar, Apr 09 2020

Examples

			1 is not a term since sigma(1) = 1 = 0^2 + 0^2 + 1^2 is the sum of 3 squares.
4 is a term since sigma(4) = 7 is not the sum of 3 squares.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 500, ! SquaresR[3, DivisorSigma[1, #]] > 0 &] (* Michael De Vlieger, Apr 29 2016 *)
  • PARI
    isA004215(n) = {n\4^valuation(n, 4)%8==7}
    lista(nn) = for(n=1, nn, if(isA004215(sigma(n)), print1(n, ", ")));
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A272405_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not (m:=(~(s:=int(divisor_sigma(n)))&s-1).bit_length())&1 and (s>>m)&7==7,count(max(startvalue,1)))
    A272405_list = list(islice(A272405_gen(),30)) # Chai Wah Wu, Jul 09 2022

Formula

{n: A000203(n) in A004215}. - R. J. Mathar, May 02 2016

A331752 Numbers k such that squarefree part of sigma(k) is equal to squarefree part of 2*k.

Original entry on oeis.org

6, 28, 468, 496, 775, 2268, 3780, 4655, 7448, 8128, 9000, 10880, 10976, 25137, 40131, 40176, 58752, 62775, 66960, 91000, 137541, 137940, 140800, 160930, 167400, 173600, 195938, 224450, 307125, 377055, 399360, 406224, 417477, 494832, 569184, 603288, 634725, 639158, 658368, 773175, 869022, 881280, 889056, 1005480
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2020

Keywords

Comments

Numbers k such that A007913(sigma(k)) is equal to A007913(2*k), thus numbers for which sigma(k) has the same set of distinct prime factors with an odd exponent as 2*k.
Among the first 257 terms, these four are also in A228058:
46277101 = 61 * 13^2 * 67^2,
49889853 = 13 * 3^2 * 653^2,
106706925 = 13 * 3^2 * 5^2 * 191^2,
676830973 = 37 * 7^2 * 13^2 * 47^2.

Examples

			For n = 46277101 = 61 * 13^2 * 67^2, sigma(46277101) = 51703722 = 2 * 3^2 * 7^2 * 31^2 * 61, with A007913(sigma(46277101)) = 2*61 = A007913(2*46277101), thus 46277101 is included in this sequence.
		

Crossrefs

Cf. A000396 (a subsequence).

Programs

  • Mathematica
    Select[Range[10^6], SameQ @@ Map[Sqrt[#] /. (c_: 1)*a_^(b_: 0) :> (c*a^b)^2 &, {DivisorSigma[1, #], 2 #}] &] (* Michael De Vlieger, Feb 08 2020, after Bill Gosper at A007913 *)
  • PARI
    isA331752(n) = (core(2*n)==core(sigma(n)));

A063869 Least k such that sigma(k)=m^n for some m>1.

Original entry on oeis.org

2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

Labos Elemer, Aug 27 2001

Keywords

Comments

For n=2 to 20 sigma(a(n)) = m^n with m=2 or m=4. Computed terms are products of Mersenne primes (A000668). Is this true for larger n? Validity of a(11) was tested individually.
The Nagell-Ljunggren conjecture implies that sigma(x) is never 3^n for n>1. If this is true, then m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006
Sierpiński says that he proved sigma(x) is never 3^r for r>1. Hence m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006

Examples

			For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
		

Crossrefs

Programs

Formula

a(n) = Min{x : A000203(x)=m^n} for some m.

Extensions

a(24) corrected by T. D. Noe, Oct 15 2006

A074386 Numbers k such that sigma(k) is the square of a prime.

Original entry on oeis.org

3, 81, 400
Offset: 1

Views

Author

Labos Elemer, Aug 22 2002

Keywords

Comments

The next term, if it exists, is > 10^11. - Donovan Johnson, Aug 24 2012
a(4), if it exists, satisfies sigma(a(4)) > 10^36. - Hiroaki Yamanouchi, Sep 10 2014
If n belongs to this sequence, it may have at most two distinct prime divisors. If n=p^k, then sigma(p^k) = (p^(k+1)-1)/(p-1) = r^2 for some prime r. For k=1, it trivially has the only solution n=3; while for k>1 it is a partial case of the Nagell-Ljunggren equation and has the only prime solution r=11 (see Bennett-Levin 2015) corresponding to n=3^4=81. If n=p^k*q^m, then sigma(n) = (p^(k+1)-1)/(p-1) * (q^(m+1)-1)/(q-1) = r^2 for some prime r, implying that (p^(k+1)-1)/(p-1) = (q^(m+1)-1)/(q-1) = r. Here k+1 and m+1 must be odd distinct primes. The Goormaghtigh conjecture would imply that its only solution is n=400 with (p,k,q,m)=(5,2,2,4). - Max Alekseyev, Apr 24 2015

Examples

			sigma[{3,81,400}]={4,121,961}.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]; If[PrimeQ[Sqrt[s]], Print[n]], {n, 1, 1000000}] (* Corrected by N. J. A. Sloane, May 26 2008 *)

Extensions

Definition corrected by Juan Lopez, May 26 2008
Edited by N. J. A. Sloane, May 26 2008

A355928 Squarefree part of the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 7, 6, 3, 2, 15, 13, 2, 3, 7, 14, 6, 6, 31, 2, 39, 5, 42, 2, 1, 6, 15, 31, 42, 10, 14, 30, 2, 2, 7, 3, 6, 3, 91, 38, 15, 14, 10, 42, 6, 11, 21, 78, 2, 3, 31, 57, 93, 2, 2, 6, 30, 2, 30, 5, 10, 15, 42, 62, 6, 26, 127, 21, 1, 17, 14, 6, 1, 2, 195, 74, 114, 31, 35, 6, 42, 5, 186, 1, 14, 21, 14, 3, 33, 30, 5, 10
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2022

Keywords

Comments

Not multiplicative.

Crossrefs

Cf. A000203, A007913, A006532 (positions of 1's), A355929.
Cf. also A080398.

Programs

  • PARI
    A355928(n) = core(sigma(n));
    
  • Python
    from sympy.ntheory.factor_ import core, divisor_sigma
    def A355928(n): return core(divisor_sigma(n)) # Chai Wah Wu, Jul 28 2022

Formula

a(n) = A007913(A000203(n)).
a(n) = A355929(n) + A007913(n).
Previous Showing 21-30 of 53 results. Next