cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A299383 Numbers k such that k * 20^k - 1 is prime.

Original entry on oeis.org

1, 18, 44, 60, 80, 123, 429, 1166, 2065, 8774, 35340, 42968, 50312, 210129
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(15) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), this sequence (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*20^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*20^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*20^n-1), print1(n", ")))
    

A210340 Generalized Woodall primes: any primes that can be written in the form n*b^n - 1 with n+2 > b > 2.

Original entry on oeis.org

17, 191, 4373, 5119, 524287, 590489, 3124999, 14680063, 3758096383, 6973568801, 34867844009, 85449218749, 824633720831, 1099999999999, 1618481116086271, 11577835060199423, 14999999999999999, 29311444762388081, 73123168801259519
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2012

Keywords

Examples

			167*2^668 - 1 is a prime number and 167*2^668 - 1 = 167*16^167 - 1, so this number is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = n*b^n - 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst

A242274 Numbers k such that k*3^k - 1 is semiprime.

Original entry on oeis.org

4, 5, 8, 12, 20, 24, 25, 28, 32, 38, 42, 44, 60, 62, 66, 70, 72, 80, 122, 125, 148, 228, 244, 270, 389, 390, 432, 464, 470, 488, 549, 560, 804, 862
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2014

Keywords

Comments

The semiprimes of this form are 323, 1214, 52487, 6377291, 69735688019, 6778308875543, 21182215236074, 640550188738907, 59296646043258911, ...
804 is a term of this sequence. - Luke March, Aug 22 2015
The smallest unresolved value of k is now 862. - Sean A. Irvine, Jun 20 2022
The smallest unresolved value of k is now 866. - Tyler Busby, Oct 06 2023
From Jon E. Schoenfield, Oct 06 2023: (Start)
After the possible term 866, the only remaining 3-digit terms are 912 and 984, unless 920 is a term.
If k is an odd term, then k*3^k - 1 is even, so (k*3^k - 1)/2 is a prime. The next odd terms after 549 are 1125 and 12889. Odd terms are in A366323. (End)
26925 is a term. - Michael S. Branicky, Oct 08 2024

Crossrefs

Cf. similar sequence listed in A242273.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..241] | IsSemiprime(s) where s is n*3^n-1];
    
  • Mathematica
    Select[Range[241], PrimeOmega[# 3^# - 1]==2&]
  • PARI
    isok(n)=bigomega(n*3^n-1)==2 /* Anders Hellström, Aug 18 2015 */

Extensions

a(21)-a(23) from Carl Schildkraut, Aug 18 2015
a(24)-a(32) from Luke March, Aug 22 2015
a(32) = 804 removed by Sean A. Irvine, Apr 25 2022
a(32)-a(33) from Sean A. Irvine, Jun 20 2022
a(34) from Tyler Busby, Oct 06 2023

A271956 Numbers n such that 2*n*3^n - 1 is prime.

Original entry on oeis.org

1, 4, 6, 10, 35, 112, 149, 390, 424, 566, 660, 664, 850, 1414, 1436, 1497, 1524, 1904, 5116, 6625, 10944, 12637, 35691, 92304
Offset: 1

Author

Ray Chandler, Apr 17 2016

Keywords

Comments

No further terms < 10^5.

Examples

			1 is in this sequence because 2*1*3^1 - 1 = 5 is prime.
		

Crossrefs

Programs

Previous Showing 11-14 of 14 results.