A135565 Number of line segments in regular n-gon with all diagonals drawn.
0, 1, 3, 8, 20, 42, 91, 136, 288, 390, 715, 756, 1508, 1722, 2835, 3088, 4896, 4320, 7923, 8360, 12180, 12782, 17963, 16344, 25600, 26494, 35451, 36456, 47908, 38310, 63395, 64800, 82368, 84082, 105315, 99972, 132756, 135014, 165243, 167720
Offset: 1
Links
- David W. Wilson, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Sequences formed by drawing all diagonals in regular polygon
Crossrefs
Programs
-
Mathematica
del[m_, n_] := Boole[Mod[n, m] == 0]; A007569[n_] := If[n < 4, n, n + Binomial[n, 4] + del[2, n] (-5 n^3 + 45 n^2 - 70 n + 24)/24 - del[4, n] (3 n/2) + del[6, n] (-45 n^2 + 262 n)/6 + del[12, n]*42 n + del[18, n]*60 n + del[24, n]*35 n - del[30, n]*38 n - del[42, n]*82 n - del[60, n]*330 n - del[84, n]*144 n - del[90, n]*96 n - del[120, n]*144 n - del[210, n]*96 n]; A007678[n_] := If[n < 3, 0, (n^4 - 6 n^3 + 23 n^2 - 42 n + 24)/24 + del[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - del[4, n] (3 n/4) + del[6, n] (-53 n^2 + 310 n)/12 + del[12, n] (49 n/2) + del[18, n]*32 n + del[24, n]*19 n - del[30, n]*36 n - del[42, n]*50 n - del[60, n]*190 n - del[84, n]*78 n - del[90, n]*48 n - del[120, n]*78 n - del[210, n]*48 n]; a[n_] := A007569[n] + A007678[n] - 1; Array[a, 40] (* Jean-François Alcover, Sep 07 2017, after Max Alekseyev, using T. D. Noe's code for A007569 and A007678 *)
Comments