cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 90 results. Next

A178204 Smith numbers of order 6; composite numbers n such that sum of digits^6 equal sum of digits^6 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).

Original entry on oeis.org

40844882, 113986781, 130852098, 141176320, 168137185, 170774472, 178180163, 181681157, 181693781, 183161897, 187117638, 215149451, 261666000, 284804842, 294557945, 307711074, 335524949, 337194240, 344552927, 347391040, 355318188, 358831104, 368657536
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Examples

			a(4) = 141176320 = 2^9*5*55147;
3*1^6+2^6+3^6+4^6+6^6+7^6 = 1^6+9*2^6+4^6+3*5^6+7^6 = 169197
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178203.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^6) == Plus @@ (fid^6)]; k = 2; lst = {}; While[k < 50000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

Example corrected by Donovan Johnson, Jan 02 2013

A036920 Composite numbers n such that digit sum of n equals digit sum of sum of its prime factors (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 94, 105, 114, 121, 150, 166, 202, 204, 222, 224, 265, 274, 315, 342, 346, 355, 382, 438, 445, 450, 454, 517, 526, 540, 562, 612, 634, 640, 706, 841, 852, 913, 915, 922, 1068, 1086, 1111, 1120, 1122, 1138, 1165, 1185, 1200, 1219, 1221, 1230
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    ds[n_]:=Total[IntegerDigits[n]]; t={}; Do[If[!PrimeQ[n]&&ds[n]==ds[Total[ Times@@@FactorInteger[n]]],AppendTo[t,n]],{n,4,1230}]; t (* Jayanta Basu, Jun 04 2013 *)

Extensions

Title made more precise by Sean A. Irvine, Nov 30 2020

A050220 Larger of Smith brothers.

Original entry on oeis.org

729, 2965, 3865, 4960, 5936, 6188, 9387, 9634, 11696, 13765, 16537, 16592, 20785, 25429, 28809, 29624, 32697, 33633, 35806, 39586, 43737, 44734, 49028, 55345, 56337, 57664, 58306, 62635, 65913, 65975, 66651, 67068, 67729, 69280, 69836, 73616, 73617, 74169
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    issmith:= proc(n)
      if isprime(n) then return false fi;
      convert(convert(n,base,10),`+`) = add(t[2]*convert(convert(t[1],base,10),`+`),t=ifactors(n)[2])
    end proc:
    S:= select(issmith, {$4..10^5}):
    sort(convert(S intersect map(`+`,S,1), list)); # Robert Israel, Jan 15 2018
  • Mathematica
    smithQ[n_] := n > 1 && !PrimeQ[n] && Total[Flatten[IntegerDigits[Table[#[[1]], {#[[2]]}]& /@ FactorInteger[n]]]] == Total[IntegerDigits[n]];
    Select[Range[10^5], smithQ[#] && smithQ[#-1]&] (* Jean-François Alcover, Jun 07 2020 *)
  • PARI
    isone(n) = {if (!isprime(n), f = factor(n); sumdigits(n) == sum(k=1, #f~, f[k,2]*sumdigits(f[k,1])););}
    isok(n) =  isone(n) && isone(n-1); \\ Michel Marcus, Jul 17 2015
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def sd(n): return sum(map(int, str(n)))
    def smith():
        for k in count(1):
            f = factorint(k)
            if sum(f[p] for p in f) > 1 and sd(k) == sum(sd(p)*f[p] for p in f):
                yield k
    def agen():
        prev = -1
        for s in smith():
            if s == prev + 1: yield s
            prev = s
    print(list(islice(agen(), 38))) # Michael S. Branicky, Dec 23 2022

Extensions

Offset corrected by Arkadiusz Wesolowski, May 08 2012

A050224 1/2-Smith numbers.

Original entry on oeis.org

88, 169, 286, 484, 598, 682, 808, 844, 897, 961, 1339, 1573, 1599, 1878, 1986, 2266, 2488, 2626, 2662, 2743, 2938, 3193, 3289, 3751, 3887, 4084, 4444, 4642, 4738, 4804, 4972, 4976, 4983, 5566, 5665, 5764, 5797, 5863
Offset: 1

Views

Author

Keywords

Examples

			88 is a 2^(-1) Smith number because the digit sum of 88, i.e., S(88) = 8 + 8 = 16, which is equal to twice the sum of the digits of its prime factors, i.e., 2 * Sp (88) = 2 * Sp (11 * 2 * 2 * 2) = 2 * (1 + 1 + 2 + 2 + 2) = 16.
		

Crossrefs

Programs

  • Mathematica
    snoQ[n_]:=Total[IntegerDigits[n]]==2Total[Flatten[IntegerDigits/@ Flatten[ Table[First[#],{Last[#]}]&/@FactorInteger[n]]]]; Select[Range[ 6000], snoQ] (* Harvey P. Dale, Oct 15 2011 *)

Extensions

More terms from Shyam Sunder Gupta, Mar 11 2005

A177927 3-Monica numbers.

Original entry on oeis.org

4, 9, 10, 22, 24, 25, 27, 34, 42, 46, 55, 58, 60, 72, 78, 81, 82, 85, 94, 105, 106, 114, 115, 118, 121, 126, 128, 132, 142, 145, 150, 166, 178, 180, 186, 187, 192, 195, 202, 204, 205, 214, 216, 222, 224, 226, 231, 234, 235, 243, 253, 256, 258, 262, 265, 274, 276, 285, 289, 295
Offset: 1

Views

Author

Chris Fry, Dec 26 2010

Keywords

Comments

3-Monica numbers are composite positive integers k for which 3 divides S(k)-Sp(k), where S(k) denotes the sum of the digits of k and Sp(k) denotes the sum of the digits in an extended prime factorization of k.

Examples

			S(10)=1+0=1, 10=2*5, Sp(10)=2+5=7, S(10)-Sp(10)=-6 which is divisible by 3.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2005, page 93.
  • E. W. Weisstein, The CRC Concise Encyclopedia of Mathematics, CRC Press, 1999, pages 1192-1193.

Crossrefs

Cf. A006753 (Smith numbers are a subset of every n-Monica sequence).
Cf. A102217 (n-Suzanne numbers are a subset of n-Monica numbers).
Cf. A102219 (This list of '3-Monica' numbers is incorrect. It does not contain all the Smith numbers and appears to be based on S(n)+Sp(n) ==0 (mod 3), instead of S(n)-Sp(n) == 0 (mod 3)).

Programs

  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n]; f[p_, e_] := e*s[p]; sp[n_] := Plus @@ f @@@ FactorInteger[n]; mon3Q[n_] := CompositeQ[n] && Divisible[s[n] - sp[n], 3]; Select[Range[300], mon3Q] (* Amiram Eldar, Apr 23 2021 *)

A334527 Numbers that are both Niven numbers and Smith numbers.

Original entry on oeis.org

4, 27, 378, 576, 588, 645, 648, 666, 690, 825, 915, 1872, 1908, 1962, 2265, 2286, 2484, 2556, 2688, 2934, 2970, 3168, 3258, 3294, 3345, 3366, 3390, 3564, 3615, 3690, 3852, 3864, 3930, 4428, 4464, 4557, 4880, 5526, 6084, 6315, 7695, 8154, 8736, 8883, 9015, 9036
Offset: 1

Views

Author

Amiram Eldar, May 05 2020

Keywords

Comments

McDaniel (1990) proved that there exist infinitely many numbers which are both base-b Niven numbers and base-b Smith numbers, for all bases b >= 8.

Examples

			27 is a term since it is a Niven number (2 + 7 = 9 is a divisor of 27) and a Smith number (27 = 3 * 3 * 3 and 2 + 7 = 3 + 3 + 3).
		

Crossrefs

Intersection of A005349 and A006753.

Programs

  • Mathematica
    digSum[n_] := Plus @@ IntegerDigits[n]; nivenSmithQ[n_] := Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^4], nivenSmithQ]
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def ok(n):
      sdn = sd(n)
      if sdn == 0 or n%sdn != 0: return False # not Niven
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and sdn == sum(sd(p)*f[p] for p in f)
    print(list(filter(ok, range(9999)))) # Michael S. Branicky, Apr 27 2021

A384444 Positive integers k for which the sum of their digits equals the product of their prime digits.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 20, 22, 30, 50, 70, 100, 123, 132, 200, 202, 213, 220, 231, 300, 312, 321, 500, 700, 1000, 1023, 1032, 1203, 1230, 1247, 1274, 1302, 1320, 1356, 1365, 1427, 1472, 1536, 1563, 1635, 1653, 1724, 1742, 2000, 2002, 2013, 2020, 2031, 2103, 2130, 2147
Offset: 1

Views

Author

Felix Huber, Jun 03 2025

Keywords

Comments

Numbers k for which A007953(k) = A384443(k).
If t is a term then t*10^m is also a term for any positive integer m.

Examples

			1302 is a term, because 1 + 3 + 0 + 2 = 3*2 = 6.
		

Crossrefs

Programs

  • Maple
    A384444:=proc(n)
        option remember;
        local k,c;
        if n=1 then
            1
        else
            for k from procname(n-1)+1 do
                c:=convert(k,'base',10);
                if mul(select(isprime,c))=add(c) then
                    return k
                fi
            od
        fi;
    end proc;
    seq(A384444(n),n=1..51);
  • Mathematica
    Select[Range[2147],Total[IntegerDigits[#]]==Times@@Select[IntegerDigits[#],PrimeQ]&] (* James C. McMahon, Jun 20 2025 *)
  • PARI
    isok(k) = my(d=digits(k)); vecprod(select(isprime, d)) == vecsum(d); \\ Michel Marcus, Jun 04 2025

A384445 a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits.

Original entry on oeis.org

5, 6, 7, 10, 23, 43, 74, 125, 199, 305, 449, 637, 885, 1216, 1649, 2184, 2852, 3664, 4657, 5863, 7298, 9002, 10993, 13312, 16000, 19084, 22613, 26606, 31120, 36192, 41867, 48220, 55317, 63232, 72022, 81746, 92479, 104282, 117229, 131393, 146843, 163652, 181892
Offset: 1

Views

Author

Felix Huber, Jun 03 2025

Keywords

Examples

			a(3) = 7 because exactly for the 7 multisets with 3 digits {0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 5}, {0, 0, 7}, {0, 2, 2} and {1, 2, 3} their sum equals the product of the prime digits.
a(4) = 10 because exactly for the 10 multisets with 4 digits {0, 0, 0, 1}, {0, 1, 2, 3}, {1, 2, 4, 7}, {1, 3, 5, 6}, {0, 0, 0, 2}, {0, 0, 2, 2}, {0, 0, 0, 3}, {0, 0, 0, 5}, {5, 5, 6, 9} and {0, 0, 0, 7} their sum equals the product of the prime digits.
		

Crossrefs

Programs

  • Maple
    f:=proc(p,n)
        local c,d,i,l,m,r,s,t,u,w,x,y,z;
        m:={0,1,4,6,8,9};
        t:=seq(cat(x,i),i in m);
        y:={l='Union'(t),w='Set'(l),t=~'Atom'};
        d:=(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))};
        Order:=p+1;
        r:=combstruct:-agfseries(y,d,'unlabeled',z,[[u,s]])[w(z,u)];
        r:=collect(convert(r,'polynom'),[z,u],'recursive');
        c:=coeff(r,z,p);
        coeff(c,u,n)
    end proc:
    A384445:=proc(n)
        local a,k,m,s,p,j,L;
        a:=1;
            for k from 9*n to 1 by -1 do
                L:=ifactors(k)[2];
                m:=nops(L);
                if m>0 and L[m,1]<=7 then
                    p:=n-add(L[j,2],j=1..m);
                    s:=k-add(L[j,1]*L[j,2],j=1..m);
                    if s=0 and p>=0 then
                        a:=a+1
                    elif p>0 and s>0 then
                        a:=a+f(p,s)
                    fi
                fi
    	od;
    	return a
    end proc;
    seq(A384445(n),n=1..43);

A384505 a(n) is the number of multisets of n positive decimal digits where the sum of the digits equals the product of the prime digits.

Original entry on oeis.org

5, 1, 1, 3, 13, 20, 31, 51, 74, 106, 144, 188, 248, 331, 433, 535, 668, 812, 993, 1206, 1435, 1704, 1991, 2319, 2688, 3084, 3529, 3993, 4514, 5072, 5675, 6353, 7097, 7915, 8790, 9724, 10733, 11803, 12947, 14164, 15450, 16809, 18240, 19757, 21374, 23073, 24876, 26759
Offset: 1

Views

Author

Felix Huber, Jun 11 2025

Keywords

Examples

			a(1) = 5 because exactly for the 5 multisets with 1 digits {1}, {2}, {3}, {5}, and {7} their sum equals the product of the prime digits.
a(2) = 1 because only for 1 multiset with 2 positive digits {2, 2} their sum equals the product of the prime digits: 2 + 2 = 2*2 = 4.
a(3) = 1 because only for 1 multiset with 3 positive digits {1, 2, 3} their sum equals the product of the prime digits: 1 + 2 + 3 = 2*3 = 6.
a(4) = 3 because exactly for the 3 multisets with 4 digits {1, 2, 4, 7}, {1, 3, 5, 6}, and {5, 5, 6, 9} their sum equals the product of the prime digits: 1 + 2 + 4 + 7 = 2 * 7 = 14, 1 + 3 + 5 + 6 = 3*5 = 15, 5 + 5 + 6 + 9 = 5*5 = 25.
		

Crossrefs

Programs

  • Maple
    f:=proc(p,n)
        local i,l,m,s,t,u,w,x,z;
        m:={1,4,6,8,9};
        t:=seq(cat(x,i),i in m);
        Order:=p+1;
        coeff(coeff(collect(convert(combstruct:-agfseries({l='Union'(t),w='Set'(l),t=~'Atom'},(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))},'unlabeled',z,[[u,s]])[w(z,u)],'polynom'),[z,u],'recursive'),z,p),u,n)
    end proc:
    A384505:=proc(n)
        local a,k,m,s,p,j,L;
        if n=1 then
            5
        elif n=2 then
            1
        else
            a:=0;
            for k from 9*n to 1 by -1 do
                L:=ifactors(k)[2];
                m:=nops(L);
                if m>0 and L[m,1]<=7 then
                    p:=n-add(L[j,2],j=1..m);
                    s:=k-add(L[j,1]*L[j,2],j=1..m);
                    if p>0 and s>0 then
                        a:=a+f(p,s)
                    fi
                fi
    	od;
    	return a
    	fi;
    end proc;
    seq(A384505(n),n=1..48);

Formula

a(n) = A384445(n) - A384445(n-1) for n > 1.

A036921 Numbers n such that digit sum of n equals digit sum of 'juxtaposition' and 'sum' of its prime factors (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 94, 121, 166, 202, 265, 274, 346, 355, 382, 438, 454, 517, 526, 562, 634, 706, 852, 913, 915, 922, 1086, 1111, 1165, 1219, 1255, 1282, 1507, 1626, 1633, 1642, 1822, 1894, 1903, 1966, 2067, 2155, 2173, 2182, 2227, 2265, 2326, 2362, 2409, 2434
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; co[n_,k_]:=Nest[Flatten[d[{#,n}]]&,n,k-1]; t={}; Do[If[!PrimeQ[n]&&Total[d[n]]==Total[d[Total[Times@@@(x=FactorInteger[n])]]]==Total[Flatten[d[co@@@x]]],AppendTo[t,n]],{n,4,2435}]; t (* Jayanta Basu, Jun 04 2013 *)
Previous Showing 21-30 of 90 results. Next