cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 108 results. Next

A067239 a(0)=1, a(n) = 8*n*(2*n-1).

Original entry on oeis.org

1, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024
Offset: 0

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

Engel expansion of cosh(1/2).
Also, 8 times hexagonal numbers (8*A000384(n) = A152750(n)), for n > 0. - Omar E. Pol, Dec 14 2008

Crossrefs

Cf. A006784 for Engel expansion definition.

Programs

Formula

a(n) = a(n-1) + 32*n - 24 (with a(1)=8). - Vincenzo Librandi, Dec 15 2010
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: (1 + 5*x + 27*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: 1 + 8*exp(x)*x*(1 + 2*x). - Elmo R. Oliveira, Dec 15 2024
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=0} 1/a(n) = log(2)/4 + 1.
Sum_{n>=0} (-1)^n/a(n) = 1 - Pi/16 + log(2)/8. (End)

A091831 Pierce expansion of 1/sqrt(2).

Original entry on oeis.org

1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203
Offset: 0

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0)=exp(1/m) m integer>1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A028254

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *)
  • PARI
    r=sqrt(2);for(n=1,10,r=r/(r-floor(r));print1(floor(r),","))

Formula

Let u(0)=sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)).
1/sqrt(2)= 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)...
limit n -> infinity a(n)^(1/n) = e.

A159835 Engel expansion of hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j).

Original entry on oeis.org

1, 4, 4, 4, 4, 6, 11, 11, 11, 14, 61, 266, 1006, 1030, 1261, 6264, 7583, 7979, 7986, 12386, 80041, 87434, 130927, 270073, 1653819, 1715177, 1973657, 3483485, 12346987, 17531499, 21237674, 84103203, 195088616, 725688944, 2813572082, 3138084145, 10870485195
Offset: 1

Views

Author

Alois P. Heinz, Apr 23 2009

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			hz = 1.3327473824328992250086010983738997044167439822598445365797 ...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A158468 (decimal expansion), A158469 (continued fraction).

Programs

  • Maple
    hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity):
    engel:= (r,n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    Digits:=300:
    engel(evalf(hz), 39);

Extensions

Some terms corrected by Alois P. Heinz, Nov 22 2020

A199880 Engel expansion of x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.

Original entry on oeis.org

3, 4, 8, 12, 15, 33, 70, 4338, 22062, 46566, 98091, 255284, 2715877, 10855925, 150153128, 10009347774, 34679420772, 43644678207, 74587800101, 229110893125, 233558717156, 286861037311, 299617642336, 312870987050, 1632483095154, 31761226898013, 66327161231576
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			0.42801103796472992390204...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A199814 (decimal expansion), A199879 (continued fraction).

Programs

  • Maple
    f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)):
    Digits:= 700:
    xv:= fsolve(f(x)=g(x), x=0..0.99):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(xv, 39);

A222482 Engel expansion of cos(1)/(1+cos(1)).

Original entry on oeis.org

3, 20, 22, 40, 68, 248, 7163, 28663, 50059, 64574, 638169, 761733, 2537764, 2925739, 3363073, 4977902, 5646039, 57212854, 159650555, 219684539, 453524713, 459239955, 2002180165, 3234082460, 14965375439, 50298730245, 89316768769, 464076054936, 520232391320
Offset: 1

Views

Author

Alois P. Heinz, Feb 21 2013

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			0.35077679479523758155811675...
		

Crossrefs

Cf. A222480 (decimal expansion), A222481 (continued fraction), A049470 (cos(1)), A073448 (1/cos(1)).

Programs

  • Maple
    Digits:= 1000:
    b:= evalf(1/(1+1/cos(1))):  engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(b, 39);

Formula

cos(1)/(1+cos(1)) = 1/(1+1/cos(1)) = 1/(1+sec(1)).

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019

A329912 Engel expansion of exp(Pi/4).

Original entry on oeis.org

1, 1, 6, 7, 9, 17, 57, 283, 326, 791, 10332, 17303, 24977, 85451, 96025, 192273, 337177, 700071, 1394732, 2514757, 73904827, 176943055, 340834596, 663816066, 833303392, 2045234708, 2352089677, 7248164506, 10106625539, 32495772149, 54837573240, 60139816999
Offset: 1

Views

Author

Alois P. Heinz, Nov 23 2019

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Crossrefs

Cf. A006784, A160510 (decimal expansion), A320428 (continued fraction).

Programs

  • Maple
    Digits:= 250:
    engel:= (r, n)-> `if`(n=0 or r=0, NULL,
            [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(evalf(exp(Pi/4)), 32);

A059177 Engel expansion of sqrt(10) = 3.16227...

Original entry on oeis.org

1, 1, 1, 7, 8, 12, 20, 86, 94, 118, 160, 179, 287, 315, 22588, 49419, 66011, 80779, 651661, 1078390, 1093865, 4254100, 27153191, 108815387, 220864645, 798937058, 992296124, 2196903274, 17524412379, 22828187385
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A010467.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Sqrt[10], 7!], 10] (* modified by G. C. Greubel, Dec 26 2016 *)

A059178 Engel expansion of 2^(1/3) = 1.25992.

Original entry on oeis.org

1, 4, 26, 32, 58, 1361, 4767, 22303, 134563, 188609, 282816, 979804, 1272032, 1330628, 3719474, 5039143, 12531368, 435451235, 5391276884, 6140156718, 24140682996, 30267765913, 56443830660, 176797839116, 645251112512
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002580.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[2^(1/3), 7!], 10] (* modified by G. C. Greubel, Dec 26 2016 *)

A059179 Engel expansion of 3^(1/3) = 1.44225.

Original entry on oeis.org

1, 3, 4, 4, 5, 8, 9, 14, 63, 91, 132, 605, 753, 993, 17297, 26120, 28227, 43466, 123132, 3551445, 7243732, 13958201, 41249856, 194184556, 3261328035, 13339681270, 18470226192, 23831447862, 25356135862
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[3^(1/3), 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
Previous Showing 41-50 of 108 results. Next