cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 269 results. Next

A307102 Numbers written in base of double factorial numbers (A006882).

Original entry on oeis.org

1, 10, 100, 101, 110, 200, 201, 1000, 1001, 1010, 1100, 1101, 1110, 1200, 10000, 10001, 10010, 10100, 10101, 10110, 10200, 10201, 11000, 11001, 11010, 11100, 11101, 11110, 11200, 20000, 20001, 20010, 20100, 20101, 20110, 20200, 20201, 21000
Offset: 1

Views

Author

Sean A. Irvine, Mar 24 2019

Keywords

Comments

a(1122755752855713895623244049306709034778906250) is the first term which cannot be included in the OEIS since it includes a non-decimal digit. - Charles R Greathouse IV, Sep 19 2012
Numbers in this mixed-radix number system can have multiple representations, so to avoid ambiguity this sequence assumes a greedy approach where leading digits are made as high as possible; thus we choose a(30) = 20000 rather than a(30) = 11201. - Sean A. Irvine, Mar 24 2019

Examples

			The digits (from right to left) have values 1, 2, 3, 8, 15, etc. (A006882), hence a(29) = 11200 because 29 = 1*15 + 1*8 + 2*3 + 0*2 + 0*1.
		

Crossrefs

Cf. A006882 (double factorial numbers), A007623 (factorial base), A019513 (erroneous version).

Programs

  • Mathematica
    a[n_] := FromDigits[NumberDecompose[n, Range[n, 1, -1]!!]]; Array[a, 40] (* Amiram Eldar, May 11 2024 *)

A095159 Numerator of b(n) given by b(1) = 1, b(2) = 2; for n >= 3, b(n) = (-1)^n (2n-1) ((n-2)!!)^2/((n-1)!!)^2, where n!! is the double factorial A006882.

Original entry on oeis.org

1, 2, -5, 28, -81, 704, -325, 768, -20825, 311296, -83349, 1507328, -1334025, 3145728, -5337189, 130023424, -1366504425, 7516192768, -5466528925, 12884901888, -87470372561, 2954937499648, -349899121845, 12919261626368, -22394407746529, 52776558133248, -89580335298125
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion of Leroy Quet, Jul 03 2004

Keywords

Comments

b(n) is such that the continued fraction [b(1); b(2), b(3),..., b(n)] is equal to sum{k=1 to n} 1/k = H(n) = the n-th harmonic number, for all positive integers n.
a(2n)/A095175(2n) -> pi as n -> inf.; a(2n+1)/A095175(2n+1) -> -4/pi as n -> inf. - Leroy Quet, Aug 03 2004

Examples

			1, 2, -5/4, 28/9, -81/64, 704/225, -325/256, 768/245, -20825/16384, 311296/99225, ...
		

Crossrefs

A113296 Cumulative product of double factorial A006882.

Original entry on oeis.org

1, 1, 2, 6, 48, 720, 34560, 3628800, 1393459200, 1316818944000, 5056584744960000, 52563198423859200000, 2422112183371431936000000, 327312129899898454671360000000, 211155601241022491077587763200000000
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			a(10) = 1!! * 2!! * 3!! * 4!! * 5!! * 6!! * 7!! * 8!! * 9!! * 10!!
= 1 * 2 * 3 * 8 * 15 * 48 * 105 * 384 * 945 * 3840
= 5056584744960000 = 2^23 x 3^9 x 5^4 x 7^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[k!!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
    Table[2^((6n^2+12n+2-3(-1)^n)/24) Pi^(((-1)^n-2n-3)/8) Exp[-1/8] Glaisher^(3/2) BarnesG[(2n+7+(-1)^n)/4] BarnesG[(2n+7-(-1)^n)/4], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
    FoldList[Times,Range[0,20]!!] (* Harvey P. Dale, Oct 29 2019 *)

Formula

a(n) = Product_{k=0..n} k!!.
a(n) = n!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = n*(n-2)!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = 2^((6*n^2+12*n+2-3*(-1)^n)/24) * Pi^(((-1)^n-2*n-3)/8) * exp(-1/8) * A^(3/2) * G((2n+7+(-1)^n)/4) * G((2n+7-(-1)^n)/4), where A is the Glaisher-Kinkelin constant (A074962), G(x) is the Barnes G-function. - Vladimir Reshetnikov, Nov 11 2015
Sum_{n>=0} 1/a(n) = 1/A137989. - Amiram Eldar, Nov 09 2020
Sum_{n>=0} (-1)^n/a(n) = A137988. - Amiram Eldar, Apr 12 2021

A116896 Numbers k such that k! + k!! + 1 is prime, where k!! denotes double factorial (A006882).

Original entry on oeis.org

0, 1, 2, 6, 42, 604, 1976, 5126, 14124
Offset: 1

Views

Author

Giovanni Resta, Mar 04 2006

Keywords

Comments

1976! + 1976!! + 1 is a 5657-digit prime. Next term is greater than 4000.

Examples

			6! + 6!! + 1 = 769, which is prime.
		

Crossrefs

Extensions

a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(9) from Michael S. Branicky, Nov 15 2024

A116897 Numbers k such that k! - k!! + 1 is prime, where k!! denotes double factorial (A006882).

Original entry on oeis.org

4, 6, 8, 14, 18, 28, 64, 324, 778, 882
Offset: 1

Views

Author

Giovanni Resta, Mar 04 2006

Keywords

Comments

Next term is greater than 3000.
Next term is greater than 15000. - Michael S. Branicky, Nov 15 2024

Examples

			6! - 6!! + 1 = 673, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[900],PrimeQ[#!-#!!+1]&] (* Harvey P. Dale, Mar 27 2015 *)

A129335 a(n) = phi(n!!) where phi is the Euler totient function. In other words, a(n) = A000010(A006882(n)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 48, 128, 432, 1024, 4320, 12288, 51840, 147456, 777600, 2359296, 12441600, 42467328, 223948800, 849346560, 4702924800, 16986931200, 103464345600, 407686348800, 2586608640000, 9784472371200, 69838433280000
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Crossrefs

Programs

Formula

If n>2 is prime, a(n) = (n-1)*a(n-2). If n=2*p, where p is odd prime, a(n)=(n-2)*a(n-2). Otherwise, a(n) = n*a(n-2). - Max Alekseyev, May 26 2007

Extensions

More terms from Stefan Steinerberger, May 30 2007

A129843 a(n) = number of positive integers that are <= n and are coprime to n!! (n!! = A006882(n)).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 4, 3, 4, 3, 5, 4, 5, 5, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 7, 6, 8, 6, 8, 6, 7, 6, 8, 6, 8, 6, 8, 7, 8, 7, 9, 7, 9, 7, 10, 7, 10, 7, 10, 7, 10, 7, 11
Offset: 1

Views

Author

Leroy Quet, Jun 03 2007

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
         if n::odd then ilog2(n)+1
         else 1+numtheory:-pi(n) - numtheory:-pi(n/2)
         fi
    end proc:
    f(2):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 08 2022
  • Mathematica
    a[n_]:=Module[{},co=0;For[i=1,iStefan Steinerberger, Jun 05 2007 *)
    Table[Total[Boole[CoprimeQ[n!!,Range[n]]]],{n,80}] (* Harvey P. Dale, Dec 12 2022 *)

Formula

From Robert Israel, Dec 08 2022: (Start)
If n is odd, a(n) = A070939(n).
If n > 2 is even, a(n) = 1 + A056171(n). (End)

Extensions

More terms from Stefan Steinerberger, Jun 05 2007

A153512 Triangle T(n,m) = (A006882(2*n + 1))^2 / ( A006882(2*m+1) * A006882(2*n-2*m+1) ).

Original entry on oeis.org

1, 3, 3, 15, 25, 15, 105, 245, 245, 105, 945, 2835, 3969, 2835, 945, 10395, 38115, 68607, 68607, 38115, 10395, 135135, 585585, 1288287, 1656369, 1288287, 585585, 135135, 2027025, 10135125, 26351325, 41409225, 41409225, 26351325, 10135125, 2027025
Offset: 0

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Comments

Row sums are 1, 6, 55, 700, 11529, 234234, 5674383, 159845400, 5136642225, 185498257230, 7438043704455...

Examples

			1;
3, 3;
15, 25, 15;
105, 245, 245, 105;
945, 2835, 3969, 2835, 945;
10395, 38115, 68607, 68607, 38115, 10395;
135135, 585585, 1288287, 1656369, 1288287, 585585, 135135;
2027025, 10135125, 26351325, 41409225, 41409225, 26351325, 10135125, 2027025;
34459425, 195270075, 585810225, 1087933275, 1329696225, 1087933275, 585810225, 195270075, 34459425;
654729075, 4146617475, 14098499415, 30211070175, 43638212475, 43638212475, 30211070175, 14098499415, 4146617475, 654729075;
13749310575, 96245174025, 365731661295, 888205463145, 1480342438575, 1749495609225, 1480342438575, 888205463145, 365731661295, 96245174025, 13749310575;
		

Programs

  • Mathematica
    T[n_, m_] = (2*n + 1)!!* Pi*Gamma[2*n + 2]/(n!*4^(n + 1)*Gamma[m + 3/ 2]*Gamma[n + 3/2 - m]);
    Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n,m)= A006882(2*n + 1)*Pi*Gamma(2*n + 2)/(n!*4^(n + 1)*Gamma(m + 3/2)*Gamma(n + 3/2 - m) ).

Extensions

Definition replaced by an integer expression by the Assoc. Editors of the OEIS, Feb 24 2010

A172089 Triangle T(n,m) = n!/(m!!*(n-m)!!) read by rows, where (.)!! = A006882(.) are double factorials.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 8, 6, 8, 3, 8, 15, 20, 20, 15, 8, 15, 48, 45, 80, 45, 48, 15, 48, 105, 168, 210, 210, 168, 105, 48, 105, 384, 420, 896, 630, 896, 420, 384, 105, 384, 945, 1728, 2520, 3024, 3024, 2520, 1728, 945, 384, 945, 3840, 4725, 11520, 9450, 16128, 9450, 11520, 4725, 3840, 945
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2010

Keywords

Comments

Row sums are {1, 2, 4, 10, 28, 86, 296, 1062, 4240, 17202, 77088, ...}.

Examples

			Triangle begins
    1;
    1,    1;
    1,    2,    1;
    2,    3,    3,     2;
    3,    8,    6,     8,    3;
    8,   15,   20,    20,   15,     8;
   15,   48,   45,    80,   45,    48,   15;
   48,  105,  168,   210,  210,   168,  105,    48;
  105,  384,  420,   896,  630,   896,  420,   384,  105;
  384,  945, 1728,  2520, 3024,  3024, 2520,  1728,  945, 384;
  945, 3840, 4725, 11520, 9450, 16128, 9450, 11520, 4725, 3840, 945;
		

Crossrefs

Programs

  • Magma
    F2:=func< n | &*[n..2 by -2] >;
    [Factorial(n)/(F2(k)*F2(n-k)): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 05 2019
    
  • Maple
    A172089 := proc(n,m)
            factorial(n)/doublefactorial(m)/doublefactorial(n-m) ;
    end proc:
    seq(seq(A172089(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 11 2011
  • Mathematica
    binomialn[n_, k_] = n!/(Factorial2[n-k]*Factorial2[k]); Table[binomialn[n, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    f2(n) = prod(i=0, (n-1)\2, n - 2*i );
    T(n,k) = n!/(f2(k)*f2(n-k));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    def T(n, k): return factorial(n)/((k).multifactorial(2)*(n-k).multifactorial(2))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 05 2019

Formula

T(n,m) = A000142(n)/(A006882(m)*A006882(n-m)).

A232701 a(n) = (2*n-1)!! mod n!, where double factorial is A006882.

Original entry on oeis.org

0, 1, 3, 9, 105, 315, 4095, 11025, 348705, 1545075, 17931375, 93087225, 3764185425, 45589819275, 1060569885375, 15877899662625, 900941666625, 5722531807867875, 90088576482279375, 1688777976676415625, 18148954872023600625, 320586579951629866875, 11054393914490520969375
Offset: 1

Views

Author

Alex Ratushnyak, Nov 28 2013

Keywords

Comments

(2n-1)!! is the product of first n odd numbers.

Examples

			a(4) = 1*3*5*7 mod (1*2*3*4) = 105 mod 24 = 9.
		

Crossrefs

Cf. A006882, A232618, A024502 (floor((2*n-1)!! / n!)).

Programs

  • Mathematica
    o = 1; Reap[For[n = 1, n <= 99, n += 2, o *= n; m = Mod[o, (Quotient[n, 2] + 1)!]; Sow[m]]][[2, 1]] (* Jean-François Alcover, Oct 05 2017, translated from Alex Ratushnyak's Python code *)
  • Python
    import math
    o=1
    for n in range(1,99,2):
      o*=n
      print(o % math.factorial(n//2+1), end=', ')
Previous Showing 21-30 of 269 results. Next