cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 78 results. Next

A022740 Expansion of Product (1-m*q^m)^-16; m=1..inf.

Original entry on oeis.org

1, 16, 168, 1376, 9604, 59488, 335904, 1758816, 8646986, 40281296, 179065184, 763837600, 3140732344, 12494160288, 48236274976, 181203877248, 663837626163, 2376282980272, 8325497904672
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=16 of A297328.

Programs

  • Maple
    N:= 30: # for a(0)..a(N)
    P:= mul(1-m*q^m,m=1..N):
    S:= series(P,q,N+1):
    S16:= series(S^(-16),q,N+1):
    seq(coeff(S16,q,i),i=0..N); # Robert Israel, Dec 22 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^16, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 23 2019 *)

A163318 Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.

Original entry on oeis.org

1, 1, 4, 8, 19, 36, 76, 142, 272, 496, 900, 1592, 2784, 4792, 8138, 13688, 22703, 37380, 60838, 98310, 157298, 250162, 394332, 618032, 961512, 1487563, 2286610, 3496776, 5316666, 8044598, 12110538, 18147166, 27068692, 40203306, 59459998, 87587428, 128522850
Offset: 0

Views

Author

Vladeta Jovovic, Jul 24 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    terms = 40;
    CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Nov 12 2020 *)

A266137 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k-1))).

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 14, 20, 33, 50, 68, 106, 147, 214, 325, 445, 624, 916, 1259, 1780, 2553, 3477, 4821, 6794, 9340, 12777, 17808, 24266, 32998, 45764, 61770, 83593, 114594, 154039, 208617, 283232, 379040, 509270, 687448, 919709, 1228319, 1650595, 2195745
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-k*(x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^(n/3), where
c = 2684.3207660224428945778151546260301591494083790... if mod(n,3) = 0
c = 2683.9203893332021512699407898064547843826991184... if mod(n,3) = 1
c = 2683.7635451650373491773203224442103370428384569... if mod(n,3) = 2.

A266138 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k+1))).

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 7, 7, 11, 13, 24, 26, 35, 44, 69, 78, 112, 150, 188, 245, 318, 429, 537, 729, 924, 1177, 1534, 1965, 2518, 3287, 4108, 5394, 6857, 8604, 11022, 14073, 17899, 22549, 28900, 36182, 45954, 58395, 72912, 92118, 116201, 146279
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[1/(1-k*(x^(2*k+1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/7), where
c = 617630.638335... if mod(n,7) = 0
c = 617630.321433... if mod(n,7) = 1
c = 617630.360795... if mod(n,7) = 2
c = 617630.429073... if mod(n,7) = 3
c = 617630.357078... if mod(n,7) = 4
c = 617630.421636... if mod(n,7) = 5
c = 617630.341606... if mod(n,7) = 6.

A294589 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^(j^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 9, 14, 14, 1, 1, 17, 36, 42, 25, 1, 1, 33, 98, 140, 103, 56, 1, 1, 65, 276, 498, 481, 289, 97, 1, 1, 129, 794, 1844, 2419, 1774, 690, 198, 1, 1, 257, 2316, 7002, 12745, 12173, 5925, 1771, 354, 1, 1, 513, 6818, 27020, 69283, 89706, 56974, 20076, 4206, 672, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2017

Keywords

Examples

			Square array begins:
    1,  1,   1,   1,    1, ...
    1,  1,   1,   1,    1, ...
    3,  5,   9,  17,   33, ...
    6, 14,  36,  98,  276, ...
   14, 42, 140, 498, 1844, ...
		

Crossrefs

Columns k=0..3 give A006906, A266941, A285241, A294590.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+j/d)) * A(n-j,k) for n > 0.

A305204 Expansion of Product_{k>=1} 1/(1 - (k*(k + 1)/2)*x^k).

Original entry on oeis.org

1, 1, 4, 10, 29, 62, 176, 363, 931, 2029, 4751, 10062, 23749, 48959, 109342, 230981, 500344, 1031667, 2223218, 4531585, 9570395, 19523510, 40411313, 81628389, 168484616, 336850254, 685112670, 1369559157, 2757908932, 5464925114, 10958578421, 21574592680
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          1, b(n, i-1)+(1+i)*i/2*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 16 2019
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - (k (k + 1)/2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Exp[Sum[Sum[(j (j + 1))^k x^(j k)/(k 2^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) ((d + 1)/2)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} 1/(1 - A000217(k)*x^k).
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j*(j + 1))^k*x^(j*k)/(k*2^k)).

A317912 Expansion of Product_{k>=2} 1/(1 - k*x^k).

Original entry on oeis.org

1, 0, 2, 3, 8, 11, 31, 41, 101, 156, 318, 498, 1037, 1555, 3024, 4889, 8849, 14112, 25622, 40322, 71314, 113926, 194677, 310819, 530030, 835484, 1400523, 2226307, 3668998, 5797558, 9521310, 14942262, 24298136, 38187102, 61384028, 96161997, 154078991, 239891926, 381723396
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2018

Keywords

Comments

First differences of A006906.
Sum of products of terms in all partitions of n into parts >= 2.

Examples

			a(6) = 31 because we have [6], [4, 2], [3, 3], [2, 2, 2] and 6 + 4*2 + 3*3 + 2*2*2 = 31.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+ i*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2) -`if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 10 2018
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[1/(1 - k x^k), {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 38; CoefficientList[Series[Exp[Sum[Sum[k^j x^(j k)/j, {k, 2, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1), {d, Divisors[k]}] b[n - k], {k, 1, n}]/n]; Differences[Table[b[n], {n, -1, 38}]]

Formula

G.f.: exp(Sum_{j>=1} Sum_{k>=2} k^j*x^(j*k)/j).

A318481 Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - i*j*k*x^(i*j*k)).

Original entry on oeis.org

1, 1, 7, 16, 64, 133, 465, 1008, 3023, 6695, 18206, 40175, 103229, 225470, 549873, 1194620, 2801742, 6015042, 13686306, 29063919, 64424496, 135362432, 293512852, 610061141, 1298516539, 2670738781, 5591712472, 11388116508, 23499720744, 47403692965, 96564236754
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[1/(1-i*j*k*x^(i*j*k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]

A318483 Expansion of Product_{k>=1} 1/(1 - k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 7, 19, 71, 173, 583, 1443, 4255, 10648, 28929, 71159, 184740, 445626, 1110122, 2638328, 6369490, 14870194, 35031627, 80465028, 185556696, 419916149, 950785580, 2121471778, 4727971847, 10412230698, 22876886529, 49776871862, 107974178843, 232302695301
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x]

Formula

a(n) ~ c * n^3 * 3^(n/3), where
c = 280631952508395331283883354935233682635.581151020... if mod(n,3)=0
c = 280631952508395331283883354935233682635.059082354... if mod(n,3)=1
c = 280631952508395331283883354935233682635.088610121... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(k)))/(18*(57 - 90*3^(1/3) + 35*3^(2/3)))) - Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(k)))/ ((-1)^(2*n/3)*(6*(3 + 2*(-3)^(1/3))^3*(-3 + (-3)^(2/3)))) - ((-1)^(1 - (4*n)/3)*Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(k))))/(486*(1 + (-1/3)^(1/3))* (1 - 2*(-1/3)^(2/3))^3)

A319859 Expansion of Product_{k>0} (1 + (2*k-1)*x^(2*k-1))/(1 - 2*k*x^(2*k)).

Original entry on oeis.org

1, 1, 2, 5, 11, 19, 33, 63, 124, 212, 350, 620, 1107, 1819, 2977, 5076, 8549, 13797, 22199, 36304, 59271, 94406, 148948, 238199, 380653, 595930, 928696, 1460474, 2288948, 3541879, 5460144, 8458886, 13084665, 20046161, 30590724, 46871521, 71711287, 108863135, 164802583
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1+(2*k-1)*x^(2*k-1))/(1-2*k*x^(2*k)),k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + (2*k-1)*x^(2*k-1))/(1 - 2*k*x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, (1+(2*k-1)*x^(2*k-1))/(1-(2*k)*x^(2*k))))

Formula

From Vaclav Kotesovec, Oct 06 2018: (Start)
a(n) ~ c * n * 2^(n/2), where
c = 59.39385182785860961527832575945047265281719... if n is even
c = 59.39502666671757816086328506683601946035153... if n is odd
(End)
Previous Showing 51-60 of 78 results. Next