cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A340623 The number of partitions of n without repeated odd parts having more even parts than odd parts.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 3, 5, 7, 8, 13, 14, 23, 23, 37, 39, 59, 63, 90, 101, 136, 156, 201, 239, 296, 355, 428, 523, 617, 754, 878, 1078, 1243, 1517, 1741, 2121, 2426, 2928, 3348, 4021, 4596, 5468, 6257, 7400, 8472, 9936, 11389, 13285, 15233, 17645, 20244, 23346
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(7) = 3 counts the partitions [4,2,1], [3,2,2], and [2,2,2,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c<0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k - 1))/(1 - x^(2*k)), {k, 1, nmax/2}] - Sum[x^(k^2)/Product[(1 - x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(prod(k=1, N, (1+x^(2*k-1))/(1-x^(2*k)))-sum(k=0, sqrt(N), x^(k^2)/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021

Formula

G.f.: (Product_{k>=1} (1+q^(2*k-1))/(1-q^(2*k))) - Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^(2*k))^2.

A085642 Number of columns in the character table of the symmetric group S_n that have zero sum.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 8, 12, 17, 26, 35, 49, 66, 92, 121, 161, 211, 280, 360, 466, 596, 766, 968, 1225, 1538, 1935, 2408, 2996, 3707, 4588, 5636, 6918, 8456, 10329, 12552, 15236, 18431, 22275, 26817, 32242, 38661, 46306, 55294, 65942, 78464, 93252, 110561
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 11 2003

Keywords

Comments

Conjecture: Equals the number of partitions of n with at least one part congruent to 2 mod 4. - Vladeta Jovovic, Jul 12 2003. This conjecture was established by Christine Bessenrodt and Jorn B. Olsson (olsson(AT)math.ku.dk), Sep 13 2004.
Also number of partitions of n with some odd part repeated. - Vladeta Jovovic, Feb 05 2005

Crossrefs

Programs

  • Mathematica
    Rest[PartitionsP[Range[0,47]] - CoefficientList[Series[Product[(1+x^(2 k - 1))/(1 - x^(2 k)), {k,48}], {x,0,47}], x]] (* Wouter Meeussen, Dec 20 2017 *)

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jul 11 2018

Extensions

Corrected and extended by Vladeta Jovovic, Jul 12 2003
More terms from David Wasserman, Feb 08 2005

A131945 Number of partitions of n where odd parts are distinct or repeated once.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 26, 32, 45, 55, 74, 90, 119, 145, 188, 228, 291, 351, 442, 532, 664, 796, 982, 1172, 1435, 1708, 2076, 2462, 2972, 3512, 4214, 4966, 5929, 6965, 8272, 9688, 11457, 13383, 15762, 18362, 21543, 25031, 29264, 33922, 39533, 45717
Offset: 0

Views

Author

Brian Drake, Jul 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of n such that every part is not congruent to 3 mod 6. More generally, g.f. for number of partitions of n such that every odd part occurs at most m times is product_{n=1..oo} (1-q^((m+1)*(2*n-1)))/(1-q^n). Similarly, g.f. for number of partitions of n such that every even part occurs at most m times is product_{n=1..oo} (1-q^((2*m+2)*n))/(1-q^n). - Vladeta Jovovic, Aug 01 2007

Examples

			a(6) = 8 because we have 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 2+2+2 and 2+2+1+1. The three excluded partitions of 6 are 3+1+1+1, 2+1+1+1+1 and 1+1+1+1+1+1.
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 + 15*x^8 + ...
G.f. = 1/q + q^5 + 2*q^11 + 2*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 10*q^41 + ...
		

Crossrefs

Programs

  • Maple
    A:= series(product( (1-q^(6*n-3))/(1-q^n), n=1..20),q,21): seq(coeff(A,q,i), i=0..20);
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, Jan 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
    nmax = 50; CoefficientList[Series[Product[1 / ((1-x^k) * (1+x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 11 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Aug 05 2007 */

Formula

G.f.: product_{n=1..oo} (1-q^(6n-3))/(1-q^n).
Expansion of chi(-x^3) / f(-x) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Aug 05 2007
Expansion of q^(1/6) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Aug 05 2007
Euler transform of period 6 sequence [ 1, 1, 0, 1, 1, 1, ...]. - Michael Somos, Aug 05 2007
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (12*n). - Vaclav Kotesovec, Dec 11 2016

A261384 Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k).

Original entry on oeis.org

1, 3, 12, 39, 117, 331, 893, 2307, 5766, 13986, 33046, 76302, 172567, 383013, 835731, 1795236, 3801105, 7941439, 16386777, 33423342, 67435311, 134675784, 266385932, 522135379, 1014643823, 1955656848, 3740191268, 7100290646, 13383997996, 25058666367
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A308806 Expansion of 1 / Sum_{k>=0} (-x)^(k*(3*k - 1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 14, 18, 23, 30, 40, 52, 67, 86, 111, 145, 188, 243, 314, 406, 527, 683, 883, 1141, 1475, 1910, 2474, 3201, 4140, 5355, 6929, 8968, 11603, 15009, 19416, 25121, 32507, 42060, 54413, 70393, 91071, 117831, 152453, 197238, 255175, 330137, 427130, 552620
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/Sum[(-x)^(k (3 k - 1)/2), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: 1 / Sum_{k>=0} (-x)^A000326(k).

A340621 The number of partitions of n without repeated odd parts having more odd parts than even parts.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 6, 12, 10, 17, 17, 22, 26, 30, 40, 40, 57, 55, 82, 74, 112, 103, 153, 140, 203, 193, 270, 262, 351, 357, 458, 478, 589, 641, 760, 846, 971, 1114, 1244, 1450, 1582, 1880, 2018, 2412, 2558, 3086, 3247, 3914, 4102, 4949
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(8) = 4 counts the partitions [7,1], [5,3], [5,2,1], and [4,3,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c>0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c > 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n - i*j, i - 1, c + j*
         If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrt(N), x^(k^2)*(1-x^(2*k))/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021

Formula

G.f.: Sum_{n>=1} q^(n^2)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Jan 14 2021

A340622 The number of partitions of n without repeated odd parts having an equal number of odd parts and even parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 5, 6, 8, 8, 14, 10, 20, 14, 30, 20, 40, 29, 56, 42, 72, 62, 96, 88, 122, 125, 160, 174, 202, 239, 263, 322, 334, 431, 434, 566, 554, 739, 719, 954, 920, 1222, 1192, 1552, 1524, 1964, 1962, 2466, 2500, 3088, 3196, 3848, 4046
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(9) = 4 counts the partitions [8,1], [7,2], [6,3], and [5,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c == 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n-i*j, i-1, c + j*
         If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=1} q^(n^2+2*n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(1/2) * 5^(3/4) * (1 + sqrt(5)) * n). - Vaclav Kotesovec, Jan 14 2021

A346797 Number of partitions of n into parts congruent to 0, 2 or 5 (mod 7).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 7, 4, 9, 6, 10, 11, 11, 17, 13, 22, 19, 25, 29, 28, 42, 34, 53, 46, 61, 67, 69, 92, 83, 115, 109, 133, 149, 152, 198, 182, 243, 233, 282, 309, 324, 398, 385, 485, 483, 563, 621, 648, 784, 768, 944, 947, 1096, 1194, 1262
Offset: 0

Views

Author

Ludovic Schwob, Aug 04 2021

Keywords

Examples

			For n=17 the a(17)=6 solutions are 2+2+2+2+2+2+5, 2+2+2+2+2+7, 2+2+2+2+9, 2+5+5+5, 5+5+7 and 5+12.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1/((1 - x^(7*k))(1 - x^(7*k-2))(1 - x^(7*k-5))),{k,52}],{x,0,52}],x] (* Stefano Spezia, Aug 04 2021 *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-2))*(1 - x^(7*k-5))).
a(n) = a(n-2) + a(n-5) - a(n-11) - a(n-17) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 2, 5, 11, 17, ... is the sequence A274830.
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*cos(3*Pi/14)*n). - Vaclav Kotesovec, Aug 05 2021

A346798 Number of partitions of n into parts congruent to 0, 3 or 4 (mod 7).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 2, 3, 6, 4, 4, 8, 9, 6, 10, 15, 12, 12, 21, 22, 18, 25, 36, 30, 32, 48, 52, 45, 60, 78, 72, 75, 105, 113, 105, 130, 166, 156, 166, 218, 236, 224, 274, 332, 325, 345, 436, 469, 462, 544, 649, 644, 688, 839, 907, 903, 1051
Offset: 0

Views

Author

Ludovic Schwob, Aug 04 2021

Keywords

Examples

			For n=19 the a(19)=6 solutions are 3+3+3+3+3+4, 3+3+3+3+7, 3+3+3+10, 3+4+4+4+4, 4+4+4+7, and 4+4+11.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1/((1 - x^(7*k))(1 - x^(7*k-3))(1 - x^(7*k-4))),{k,55}],{x,0,55}],x] (* Stefano Spezia, Aug 04 2021 *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-3))*(1 - x^(7*k-4))).
a(n) = a(n-3) + a(n-4) - a(n-13) - a(n-15) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 3, 4, 13, 15, ... is the sequence A057570.
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*cos(Pi/14)*n). - Vaclav Kotesovec, Aug 05 2021
Previous Showing 41-50 of 66 results. Next