cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 321 results. Next

A037381 Numbers k such that every base-3 digit of k is a base-5 digit of k.

Original entry on oeis.org

1, 2, 7, 27, 28, 30, 35, 40, 51, 54, 55, 60, 71, 121, 127, 132, 135, 136, 137, 138, 139, 142, 147, 152, 157, 160, 161, 175, 176, 177, 178, 179, 180, 185, 190, 195, 202, 210, 211, 212, 214, 227, 232, 235, 238, 239, 242, 251, 255
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037381 n = a037381_list !! (n-1)
    a037381_list = filter f [1..] where
       f x = null $ nub (ds 3 x) \\ nub (ds 5 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[300],SubsetQ[IntegerDigits[#,5],IntegerDigits[#,3]]&] (* Harvey P. Dale, Dec 31 2017 *)

A037396 Numbers k such that every base-5 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 11, 22, 93, 121, 124, 126, 156, 181, 199, 317, 362, 598, 750, 751, 752, 755, 756, 758, 768, 770, 771, 775, 776, 780, 781, 785, 796, 812, 831, 841, 843, 849, 859, 895, 900, 906, 907, 911, 912, 918, 922, 927, 931, 932
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037396 n = a037396_list !! (n-1)
    a037396_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
    
  • PARI
    is(n)=#setminus(Set(digits(n,5)), Set(digits(n,9)))==0 \\ Charles R Greathouse IV, Feb 11 2017

A043279 Maximal run length in base 5 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091.
Cf. A043276-A043290 for base-2 to base-16 analogs.

Programs

  • Mathematica
    A043279[n_]:=Max[Map[Length,Split[IntegerDigits[n,5]]]];Array[A043279,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    A043279(n, b=5)={my(m,c=1); while(n>0, n%b==(n\=b)%b && c++ && next; m=max(m, c); c=1); m} \\ M. F. Hasler, Jul 23 2013

A110603 Numbers n whose base 5 representations, interpreted as base 10 integers, are semiprimes.

Original entry on oeis.org

4, 5, 9, 11, 12, 18, 19, 31, 36, 37, 38, 43, 44, 46, 47, 48, 51, 52, 53, 58, 59, 61, 76, 77, 78, 84, 86, 88, 94, 96, 103, 106, 108, 112, 128, 131, 146, 147, 148, 151, 156, 159, 161, 168, 171, 172, 177, 178, 181, 184, 194, 196, 198, 208, 212, 218, 223, 226, 227, 228
Offset: 1

Views

Author

Jonathan Vos Post, Jul 30 2005

Keywords

Comments

A108873 is the equivalent using base 3. A110602 is the equivalent using base 4. A110604 is the equivalent using base 6. A110605 is the equivalent using base 7. A110606 is the equivalent using base 8. A110607 is the equivalent using base 9.

Examples

			a(1) = 4 because 4 (base 5) = 4 and 4 (base 10) = 2 * 2, a semiprime (A001358).
a(2) = 5 because 5 (base 5) = 10 and 10 (base 10) = 2 * 5.
a(3) = 9 because 9 (base 5) = 14 and 14 (base 10) = 2 * 7.
a(4) = 11 because 11 (base 5) = 21 and 21 (base 10) = 3 * 7.
a(5) = 12 because 12 (base 5) = 22 and 22 (base 10) = 2 * 11.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[228], Plus @@ Last /@ FactorInteger[FromDigits[IntegerDigits[ #, 5]]] == 2 &] (* Ray Chandler, Aug 05 2005 *)
    Select[Range[300],PrimeOmega[FromDigits[IntegerDigits[#,5],10]]==2&] (* Harvey P. Dale, Aug 14 2023 *)

Extensions

Corrected and extended by Ray Chandler, Aug 05 2005

A262102 Pseudoprimes to base 5, written in base 5.

Original entry on oeis.org

4, 444, 1332, 4221, 11111, 22131, 23404, 30031, 42241, 112443, 133321, 134421, 140122, 140411, 202401, 214244, 222223, 224104, 241121, 304011, 323131, 331401, 402201, 404041, 411313, 421411, 434411, 1001001, 1001331, 1010142, 1032032, 1140421, 1212131, 1224103, 1233321, 1302302, 1302401, 1414331, 1421124, 1440143
Offset: 1

Views

Author

Abdul Gaffar Khan, Sep 11 2015

Keywords

Crossrefs

Cf. A007091 (numbers in base 5), A005936 (pseudoprimes to base 5).

Programs

  • Mathematica
    base = 5; t = {}; n = 1;
    While[Length[t] < 40, n++;
    If[! PrimeQ[n] && PowerMod[base, n - 1, n] == 1,
      AppendTo[t, FromDigits@IntegerDigits[n, 5]]]]; t
  • PARI
    lista(nn, b=5) = {for (n=1, nn, if (Mod(b, n)^(n-1)==1 && !ispseudoprime(n) && n>1, print1(subst(Pol(digits(n,b), x), x, 10), ", ");););} \\ Michel Marcus, Sep 30 2015

Formula

a(n) = A007091(A005936(n)).

A293658 Base-5 circular primes that are not base-5 repunits.

Original entry on oeis.org

7, 11, 13, 17, 19, 23, 167, 211, 239, 283, 359, 431, 547, 571, 1069, 1249, 1733, 2221, 2417, 2713, 2749, 3049, 3109, 3121
Offset: 1

Views

Author

Felix Fröhlich, Oct 28 2017

Keywords

Comments

Conjecture: The sequence is finite, with 3121 being the last term (see A293142).
Written in base 5 (A007091), the terms are 12, 21, 23, 32, 34, 43, 1132, 1321, 1424, 2113, 2414, 3211, 4142, 4241, 13234, 14444, 23413, 32341, 34132, 41323, 41444, 44144, 44414, 44441. - Antti Karttunen, Nov 26 2017
a(25), if it exists, must be larger than prime(10^6) = 15485863, an 11-digit quinary number. - Michael De Vlieger, Nov 26 2017

Examples

			1069 written in base 5 is 13234. The base-5 numbers 13234, 32341, 23413, 34132, 41323 written in base 10 are 1069, 2221, 1733, 2417, 2713, respectively and all those numbers are prime, so 1069, 1733, 2221, 2417 and 2713 are terms of the sequence.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9), A293663 (b=10).

Programs

  • Mathematica
    Select[Array[Map[If[Union@ # == {1}, 0, FromDigits[#, 5]] &, NestList[RotateLeft, #, Length@ # - 1]] &@ IntegerDigits[Prime@ #, 5] &, 10^5, 4], AllTrue[#, PrimeQ] &][[All, 1]] (* Michael De Vlieger, Nov 26 2017 *)
  • PARI
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
    forprime(p=1, , if(vecmin(digits(p, 5))!=vecmax(digits(p, 5)), if(is_circularprime(p, 5), print1(p, ", "))))

A353113 Base-5 representation of A000422(n).

Original entry on oeis.org

1, 41, 2241, 114241, 3214241, 131414241, 3424414241, 134414414241, 4010314414241, 140000314414241, 121200300314414241, 111333240300314414241, 102224302240300314414241, 43323231102240300314414241, 40130121131102240300314414241
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.reverse.join.to_i.to_s(k).to_i}
    end
    p A(5, 20)

Formula

a(n) = A007091(A000422(n)).

A004053 For m=2,3,..., write m in bases 2,3,..,m.

Original entry on oeis.org

10, 11, 10, 100, 11, 10, 101, 12, 11, 10, 110, 20, 12, 11, 10, 111, 21, 13, 12, 11, 10, 1000, 22, 20, 13, 12, 11, 10, 1001, 100, 21, 14, 13, 12, 11, 10, 1010, 101, 22, 20, 14, 13, 12, 11, 10, 1011, 102, 23, 21, 15, 14, 13, 12, 11, 10, 1100, 110, 30, 22, 20, 15, 14, 13, 12, 11, 10
Offset: 2

Views

Author

Johan Boye (johbo(AT)ida.liu.se)

Keywords

Examples

			Triangle begins:
    10;
    11,  10;
   100,  11, 10;
   101,  12, 11, 10;
   110,  20, 12, 11, 10;
   111,  21, 13, 12, 11, 10;
  1000,  22, 20, 13, 12, 11, 10;
  1001, 100, 21, 14, 13, 12, 11, 10;
  ...
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Flatten[Table[IntegerDigits[m,b],{m,2,20},{b,2,m}],1] (* Harvey P. Dale, Dec 01 2024 *)
  • PARI
    T(n, k) = fromdigits(digits(n, k), 10);
    tabl(nn) = for (n=2, nn, for (b=2, n, print1(T(n, b), ", "))); \\ Michel Marcus, Aug 30 2019

A037387 Numbers k such that every base-4 digit of k is a base-5 digit of k.

Original entry on oeis.org

1, 2, 3, 5, 10, 15, 21, 28, 37, 38, 42, 58, 63, 76, 80, 86, 132, 136, 137, 138, 142, 152, 160, 167, 178, 183, 190, 191, 202, 204, 205, 210, 213, 214, 215, 217, 220, 221, 222, 223, 238, 240, 256, 257, 258, 261, 266, 276, 277, 278
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037387 n = a037387_list !! (n-1)
    a037387_list = filter f [1..] where
       f x = null $ nub (ds 4 x) \\ nub (ds 5 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[300],SubsetQ[IntegerDigits[#,5],IntegerDigits[#,4]]&] (* Harvey P. Dale, Mar 27 2019 *)

A037393 Numbers k such that every base-5 digit of k is a base-6 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 18, 24, 31, 46, 56, 62, 75, 81, 87, 90, 91, 92, 93, 94, 99, 118, 124, 145, 150, 157, 226, 232, 243, 245, 291, 300, 306, 307, 308, 311, 312, 314, 322, 326, 332, 336, 337, 338, 341, 362, 372, 374, 378, 411, 416, 418
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037393 n = a037393_list !! (n-1)
    a037393_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 6 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
Previous Showing 21-30 of 321 results. Next