cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 321 results. Next

A037394 Numbers k such that every base-5 digit of k is a base-7 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 17, 51, 66, 102, 109, 123, 156, 158, 162, 206, 218, 312, 317, 324, 361, 381, 416, 418, 423, 458, 462, 463, 466, 467, 468, 472, 494, 518, 545, 546, 549, 556, 557, 559, 562, 584, 606, 619, 621, 630, 640, 651, 658, 687
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037394 n = a037394_list !! (n-1)
    a037394_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 7 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[700],SubsetQ[IntegerDigits[#,7],IntegerDigits[#,5]]&] (* Harvey P. Dale, Sep 29 2017 *)

A037395 Numbers k such that every base-5 digit of k is a base-8 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 83, 91, 93, 99, 124, 136, 161, 200, 206, 272, 314, 467, 524, 532, 540, 545, 546, 549, 609, 643, 656, 672, 680, 705, 706, 708, 770, 771, 774, 775, 776, 781, 784, 786, 787, 789, 793, 794, 796, 798, 799, 843, 871, 906
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037395 n = a037395_list !! (n-1)
    a037395_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 8 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[1000],SubsetQ[IntegerDigits[#,8],IntegerDigits[#,5]]&] (* Harvey P. Dale, Oct 13 2015 *)

A037454 a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*3^i is the base 3 representation of n.

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 12, 13, 14, 36, 37, 38, 42, 43, 44, 48, 49, 50, 72, 73, 74, 78, 79, 80, 84, 85, 86, 216, 217, 218, 222, 223, 224, 228, 229, 230, 252, 253, 254, 258, 259, 260, 264, 265, 266, 288, 289, 290, 294, 295, 296, 300, 301, 302, 432, 433, 434, 438
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 3)
            r += b * q
            b *= 6
        end
    r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
  • Maple
    seq(n + (1/2)*add(6^k*floor(n/3^k), k = 1..floor(ln(n)/ln(3))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    t = Table[FromDigits[RealDigits[n, 3], 6], {n, 0, 100}]
    (* Clark Kimberling, Aug 03 2012 *)

Formula

From Peter Bala, Dec 01 2016: (Start)
a(n) = n + 1/2*Sum_{k >= 1} 6^k*floor(n/3^k). Cf. A037462, A007091 and A102491.
a(0) = 0; a(n) = 6*a(n/3) if n == 0 (mod 3) else a(n) = a(n-1) + 1. (End)

Extensions

Offset changed to 0 by Clark Kimberling, Aug 03 2012

A063432 Triangle read by rows in which k-th entry in row n is representation of n in base k, for 1 <= k <= n.

Original entry on oeis.org

1, 11, 10, 111, 11, 10, 1111, 100, 11, 10, 11111, 101, 12, 11, 10, 111111, 110, 20, 12, 11, 10, 1111111, 111, 21, 13, 12, 11, 10, 11111111, 1000, 22, 20, 13, 12, 11, 10, 111111111, 1001, 100, 21, 14, 13, 12, 11, 10, 1111111111, 1010, 101, 22, 20, 14, 13
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2001

Keywords

Comments

Representation of n in base 1 is defined to be a concatenation of n 1's.
It is difficult to write twenty-one in base 11 using decimal digits.
Representation in bases greater than 10 are written in base 10. This is really nasty! - N. J. A. Sloane, Dec 06 2002

Examples

			Rows start (1), (11, 10), (111, 11, 10), (1111, 100, 11, 10), etc.
		

Crossrefs

Cf. A063431.
Columns are truncated versions of A000042, A007088, A007089, A007090, A007091, A007092, A007093, A007094, A007095, A000027 and perhaps A055649, etc.
Without the 1st column becomes A004053.

Programs

  • Mathematica
    f[n_] := Flatten[ Append[ {FromDigits[ Table[1, {n}]] }, Table[ FromDigits[ IntegerDigits[n, i]], {i, 2, n}]]]; Flatten[ Table[ f[n], {n, 1, 10}]] (* Robert G. Wilson v *)

A277543 a(n) = n/5^m mod 5, where 5^m is the greatest power of 5 that divides n.

Original entry on oeis.org

1, 2, 3, 4, 1, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 1, 2, 3, 4, 4, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 1, 2, 3, 4, 4, 1, 2, 3, 4, 2, 1, 2, 3, 4, 1, 1, 2, 3, 4, 2, 1, 2, 3, 4, 3, 1, 2, 3, 4, 4, 1, 2, 3, 4, 3, 1, 2, 3, 4, 1, 1, 2, 3, 4, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 19 2016

Keywords

Comments

a(n) is the rightmost nonzero digit in the base 5 expansion of n (A007091).

Examples

			a(20) = (20/5 mod 5) = 4.
		

Crossrefs

Cf. A277550, A277551, A277555, A277548 (positions of 1, 2, 3 and 4 in this sequence).

Programs

  • Mathematica
    Table[Mod[n/5^IntegerExponent[n, 5], 5], {n, 1, 160}]
  • PARI
    a(n) = n/5^valuation(n, 5) % 5; \\ Michel Marcus, Oct 20 2016

Formula

a(n) = A132739(n) mod 5 = A010874(A132739(n)). - Michel Marcus, Oct 20 2016

A353144 Decimal repunits written in base 5.

Original entry on oeis.org

0, 1, 21, 421, 13421, 323421, 12023421, 241023421, 10321023421, 211421023421, 4233421023421, 140223421023421, 3310023421023421, 121201023421023421, 2424021023421023421, 104030421023421023421, 2131113421023421023421, 43122323421023421023421, 1413002023421023421023421
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(digits((10^n-1)/9, 5));

Formula

a(n) = A007091(A002275(n)).

A004679 Primes written in base 5.

Original entry on oeis.org

2, 3, 10, 12, 21, 23, 32, 34, 43, 104, 111, 122, 131, 133, 142, 203, 214, 221, 232, 241, 243, 304, 313, 324, 342, 401, 403, 412, 414, 423, 1002, 1011, 1022, 1024, 1044, 1101, 1112, 1123, 1132, 1143, 1204, 1211, 1231, 1233, 1242, 1244, 1321, 1343, 1402, 1404, 1413, 1424, 1431
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A004680.

Programs

  • Magma
    [Seqint(Intseq(NthPrime(n), 5)): n in [1..60]]; // G. C. Greubel, Oct 12 2018
  • Mathematica
    FromDigits/@IntegerDigits[Prime[Range[50]],5] (* Harvey P. Dale, Dec 09 2010 *)
  • PARI
    a(n)=subst(Pol(digits(prime(n),5)),'x,10) \\ Charles R Greathouse IV, Nov 06 2013
    

Formula

a(n) = A007091(A000040(n)). - Michel Marcus, Sep 03 2016

A309956 Product of digits of (n written in base 5).

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 0, 3, 6, 9, 12, 0, 4, 8, 12, 16, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 0, 3, 6, 9, 12, 0, 4, 8, 12, 16, 0, 0, 0, 0, 0, 0, 2, 4, 6, 8, 0, 4, 8, 12, 16, 0, 6, 12, 18, 24, 0, 8, 16, 24, 32, 0, 0, 0, 0, 0, 0, 3, 6, 9, 12, 0, 6, 12, 18, 24, 0, 9, 18, 27, 36, 0, 12, 24, 36, 48, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2019

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [&*Intseq(n,5):n in [1..100]]; // Marius A. Burtea, Aug 25 2019
  • Mathematica
    Table[Times @@ IntegerDigits[n, 5], {n, 0, 100}]
  • PARI
    a(n) = my(d = if (n, digits(n,5), [0])); vecprod(d); \\ Michel Marcus, Aug 25 2019
    

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3) * (1 + A(x^5)).

A353105 Base-5 representation of A007908(n).

Original entry on oeis.org

1, 22, 443, 14414, 343340, 12422311, 304001232, 11130030203, 223101104124, 200240443211120, 130211343340003021, 112140204001002213422, 100421133100401442024323, 40324014240311242321340224, 31241112311230113034201201130
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(5, 20)

Formula

a(n) = A007091(A007908(n)).

A382415 Numbers with at least one zero in their base-5 representation.

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 60, 65, 70, 75, 76, 77, 78, 79, 80, 85, 90, 95, 100, 101, 102, 103, 104, 105, 110, 115, 120, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Paolo Xausa, Mar 25 2025

Keywords

Crossrefs

Cf. analogous sequences in other bases: A062289 (base 2), A081605 (base 3), A196032 (base 4), A382416 (base 6), A382413 (base 7), A382417 (base 8), A382418 (base 9), A011540 (base 10).
Cf. A007091, A023721 (complement), A023722.

Programs

  • Mathematica
    Select[Range[0, 150], DigitCount[#, 5, 0] > 0 &]
Previous Showing 31-40 of 321 results. Next