cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 243 results. Next

A037098 Sequence A037093 shown in octal.

Original entry on oeis.org

0, 1, 3, 16, 71, 345, 1624, 17121, 71577, 345342, 1624171, 17121011, 71577060, 345342131, 1624173733, 17331156576, 71473314601, 345325637555, 3624144315044, 16333160460471, 71272765314407
Offset: 0

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Crossrefs

Compare to A037099.

Formula

a(n) = A007094(A037093(n)).

Extensions

Entry revised Dec 29 2007

A037099 Sequence A037094 shown in octal.

Original entry on oeis.org

0, 7, 35, 162, 1713, 7157, 34534, 162417, 1712101, 7157706, 34534213, 162417333, 1733115660, 7147321437, 34532167225, 362414612202, 1633316153423, 7127276460567, 34502517467034, 362420550141507
Offset: 0

Views

Author

Antti Karttunen, Jan 29 1999

Keywords

Crossrefs

Formula

a(n) = A007094(A037094(n)).

Extensions

Entry revised Dec 29 2007

A043160 Numbers k such that 1 and 3 occur juxtaposed in the base-8 representation of k but not of k-1.

Original entry on oeis.org

11, 25, 75, 88, 139, 153, 200, 217, 267, 281, 331, 345, 395, 409, 459, 473, 523, 537, 587, 600, 651, 665, 704, 779, 793, 843, 857, 907, 921, 971, 985, 1035, 1049, 1099, 1112, 1163, 1177, 1224, 1241, 1291, 1305, 1355, 1369, 1419, 1433, 1483, 1497, 1547, 1561
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    SequencePosition[Table[If[SequenceCount[IntegerDigits[n,8],{1,3}]>0 || SequenceCount[ IntegerDigits[n,8],{3,1}]>0,1,0],{n,1600}],{0,1}][[All,2]] (* Harvey P. Dale, Nov 11 2022 *)
  • Python
    def has13or31(n): o = oct(n); return "13" in o or "31" in o
    def ok(n): return has13or31(n) and not has13or31(n-1)
    print([k for k in range(1600) if ok(k)]) # Michael S. Branicky, Nov 25 2021

A043940 Numbers k such that 1 and 3 occur juxtaposed in the base-8 representation of k but not of k+1.

Original entry on oeis.org

11, 25, 75, 95, 139, 153, 207, 217, 267, 281, 331, 345, 395, 409, 459, 473, 523, 537, 587, 607, 651, 665, 767, 779, 793, 843, 857, 907, 921, 971, 985, 1035, 1049, 1099, 1119, 1163, 1177, 1231, 1241, 1291, 1305, 1355, 1369, 1419, 1433, 1483, 1497, 1547, 1561
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    SequencePosition[Table[If[SequenceCount[IntegerDigits[n,8],{1,3}]>0 || SequenceCount[IntegerDigits[n,8],{3,1}]>0,1,0],{n,1400}],{1,0}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 07 2020 *)
  • Python
    def has13or31(n): o = oct(n); return "13" in o or "31" in o
    def ok(n): return has13or31(n) and not has13or31(n+1)
    print([k for k in range(1600) if ok(k)]) # Michael S. Branicky, Nov 25 2021

A057104 The non-octal numbers: numbers containing an 8 or 9 (they cannot be mistaken for octal numbers).

Original entry on oeis.org

8, 9, 18, 19, 28, 29, 38, 39, 48, 49, 58, 59, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 118, 119, 128, 129, 138, 139, 148, 149, 158, 159, 168, 169, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188
Offset: 1

Views

Author

Thomas Schulze (jazariel(AT)tiscalenet.it), Sep 12 2000

Keywords

Examples

			'42' might be read as an octal number, but '48' could not be and so belongs to the sequence.
		

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    Select[Range[200],Max[IntegerDigits[#]]>7&] (* Harvey P. Dale, May 26 2018 *)
  • PARI
    isok(n) = vecmax(digits(n)) > 7; \\ Michel Marcus, Feb 18 2016
    
  • Python
    def ok(n): return {'8', '9'} & set(str(n)) != set()
    print(list(filter(ok, range(189)))) # Michael S. Branicky, Aug 09 2021

A249068 a(n+1) gives the number of occurrences of the last digit of a(n) in octal base so far, up to and including a(n), with a(0)=0.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 4, 4, 5, 4, 6, 4, 7, 4, 8, 5, 5, 6, 5, 7, 5, 8, 6, 6, 7, 6, 8, 7, 7, 8, 8, 9, 18, 10, 11, 9, 22, 9, 24, 10, 13, 9, 28, 9, 30, 10, 14, 11, 13, 10, 15, 9, 38, 12, 11, 14, 13, 11, 15
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2014

Keywords

Comments

This is the octal version of Eric Angelini's A248034.

Examples

			For n=16, we see that a(15) = 8, '10' in octal, and '0' has occurred just twice in the octal representations of terms a(0) .. a(15), namely in a(0) = 0 (which is also zero when read in octal base) and a(15), thus a(16) = 2.
		

Crossrefs

Cf. A248034 (analogous sequence in base-10), A007094 (octal representation of n).

A331561 The base-10 numbers with a digit product > 0 and which when written in bases 3,4,5,6,7,8,9 have three or more other base representations with the same digit product.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 12563124891, 115233863842, 123858133813, 363254652118, 1324658354423, 1511864334458, 1825693128524, 2321856215149, 2632654133853, 3146626254542, 3521445321466, 12462982162122, 12496523158865, 13129883155583, 13443165514365, 14213435966581
Offset: 1

Views

Author

Scott R. Shannon, Jan 20 2020

Keywords

Comments

This is a subsequence of A331565.

Examples

			6 is a term as 6_10 = 6_7 = 6_8 = 6_9, so it has three other base representations where the digit product also equals 6.
12563124891 is a term as 12563124891_10 = 5434343211123_6 = 623216541162_7 = 135464411233_8, so it has three other base representations where the digit product also equals 103680.
115233863842 is a term as 115233863842_10 = 124534313342214_6 = 11216413452466_7 = 1532436234242_8, so it has three other base representations where the digit product also equals 829440.
		

Crossrefs

Extensions

Terms a(10) and beyond from Giovanni Resta, Jan 27 2020

A376897 Positive numbers k such that all the digits in the octal expansion of k^2 are distinct.

Original entry on oeis.org

1, 2, 4, 5, 7, 13, 14, 15, 18, 20, 21, 28, 30, 37, 39, 43, 44, 45, 53, 55, 63, 78, 84, 103, 110, 113, 117, 127, 149, 155, 156, 161, 162, 172, 173, 174, 175, 179, 220, 236, 242, 270, 286, 293, 299, 301, 340, 343, 350, 356, 361, 395, 407, 412, 425, 439, 461, 475, 499, 674, 819, 1001, 1211, 1230, 1244, 1323, 1764, 2450, 2751, 3213
Offset: 1

Views

Author

Kalle Siukola, Oct 08 2024

Keywords

Comments

There are no terms >= 2^12 because 2^24-1 is the largest eight-digit octal number.

Examples

			110 is in the sequence because 110^2 = 12100 = 27504_8 and no octal digit occurs more than once.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^12], DuplicateFreeQ[IntegerDigits[#^2, 8]] &] (* Michael De Vlieger, Oct 12 2024 *)
  • Python
    for k in range(1, 2**12):
        octal = format(k**2, "o")
        if len(octal) == len(set(octal)): print(k, end=",")

A002441 Squares written in base 8.

Original entry on oeis.org

1, 4, 11, 20, 31, 44, 61, 100, 121, 144, 171, 220, 251, 304, 341, 400, 441, 504, 551, 620, 671, 744, 1021, 1100, 1161, 1244, 1331, 1420, 1511, 1604, 1701, 2000, 2101, 2204, 2311, 2420, 2531, 2644, 2761, 3100, 3221, 3344, 3471, 3620, 3751, 4104, 4241
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 95.

Crossrefs

Programs

Formula

a(n) = A007094(A000290(n)). - Jason Kimberley, Dec 13 2012

Extensions

More terms from James Sellers, Sep 08 2000

A004638 Cubes written in base 8.

Original entry on oeis.org

1, 10, 33, 100, 175, 330, 527, 1000, 1331, 1750, 2463, 3300, 4225, 5270, 6457, 10000, 11461, 13310, 15313, 17500, 22055, 24630, 27607, 33000, 36411, 42250, 46343, 52700, 57505, 64570, 72137, 100000, 106141, 114610, 123573, 133100, 142735, 153130, 163667
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n^3, 8)): n in [1..40]]; // Vincenzo Librandi, Oct 15 2015
    
  • Mathematica
    Table[FromDigits[IntegerDigits[n^3, 8]], {n, 40}] (* Vincenzo Librandi, Oct 15 2015 *)
  • PARI
    for(n=1,40, print1(fromdigits(digits(n^3, 8)), ", ")) \\ G. C. Greubel, Sep 10 2018

Formula

a(n) = A007094(n^3) = A007094(A000578(n)). - Vincenzo Librandi, Oct 15 2015

Extensions

Changed offset and more terms from Vincenzo Librandi, Oct 15 2015
Previous Showing 51-60 of 243 results. Next