cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A016090 a(n) = 16^(5^n) mod 10^n: Automorphic numbers ending in digit 6, with repetitions.

Original entry on oeis.org

6, 76, 376, 9376, 9376, 109376, 7109376, 87109376, 787109376, 1787109376, 81787109376, 81787109376, 81787109376, 40081787109376, 740081787109376, 3740081787109376, 43740081787109376, 743740081787109376, 7743740081787109376, 7743740081787109376
Offset: 1

Views

Author

Keywords

Comments

Also called congruent numbers.
a(n)^2 == a(n) (mod 10^n), that is, a(n) is idempotent of Z[10^n].
Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - Eric M. Schmidt, Aug 01 2012
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and a(n) - 1 is divisible by 5^n. - Eric M. Schmidt, Aug 18 2012

Examples

			a(5) = 09376 because 09376^2 == 87909376 ends in 09376.
		

References

  • R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
  • R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
  • Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4.
  • Ya. I. Perelman, Algebra can be fun, pp. 97-98.
  • A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.
  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

A018248 gives the associated 10-adic number.
A003226 = {0, 1} union A007185 union (this sequence).

Programs

  • GAP
    List([1..22], n->PowerModInt(16,5^n,10^n)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [Modexp(16, 5^n, 10^n): n in [1..30]]; // Bruno Berselli, Mar 13 2018
    
  • Maple
    [seq(16 &^ 5^n mod 10^n, n=1..22)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Array[PowerMod[16, 5^#, 10^#] &, 18] (* Michael De Vlieger, Mar 13 2018 *)
  • PARI
    A016090(n)=lift(Mod(6,10^n)^5^(n-1)) \\ M. F. Hasler, Dec 05 2012, edited Jan 26 2020
    
  • Sage
    [crt(0, 1, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
    

Formula

a(n) = 16^(5^n) mod 10^n.
a(n+1) == 2*a(n) - a(n)^2 (mod 10^(n+1)). - Eric M. Schmidt, Jul 28 2012
a(n) = 6^(5^n) mod 10^n. - Sylvie Gaudel, Feb 17 2018
a(2*n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2*n). - Sylvie Gaudel, Mar 12 2018
a(n) = 6^5^(n-1) mod 10^n. - M. F. Hasler, Jan 26 2020
a(n) = 2^(10^n) mod 10^n for n >= 2. - Peter Bala, Nov 10 2022

Extensions

Edited by David W. Wilson, Sep 26 2002
Definition corrected by M. F. Hasler, Dec 05 2012

A033819 Trimorphic numbers: n^3 ends with n. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 3 (mod 4).

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, 18751, 31249, 40625, 49999, 50001, 59375, 68751, 81249, 90624, 90625
Offset: 1

Views

Author

Keywords

Comments

n is in this sequence iff it occurs in one of A002283, A007185, A016090, A198971, A199685, A216092, A216093, A224473, A224474, A224475, A224476, A224477, and A224478. - Eric M. Schmidt, Apr 08 2013
Let q(n) = floor(a(n)^3 / 10^A055642(a(n))), where A055642(n) is the number of digits in the decimal expansion of n. As well, let na and nb denote the indices of the preceding and next terms that begin with a 9. Then (1/q(n)) * (a(n)^4 - a(n)^3 - a(n)^2 + a(n)) - 2*a(n)^2 + a(n) + q(n) + 1 = a(na+nb-n)^2 - a(na+nb-n) - q(na+nb-n). - Christopher Hohl, Apr 08 2019

Examples

			376^3 = 53157376 which ends with 376.
		

References

  • S. Premchaud, A class of numbers, Math. Student, 48 (1980), 293-300.

Crossrefs

Cf. A074194, A215558 (cubes of the terms).

Programs

  • Magma
    [n: n in [0..10^5] | Intseq(n^3)[1..#Intseq(n)] eq Intseq(n)]; // Bruno Berselli, Apr 04 2013
  • Mathematica
    Do[x=Floor[N[Log[10, n], 25]]+1; If[Mod[n^3, 10^x] == n, Print[n]], {n, 1, 10000}]
    Select[Range[100000],PowerMod[#,3,10^IntegerLength[#]]==#&](* Harvey P. Dale, Nov 04 2011 *)
    Select[Range[0, 10^5], 10^IntegerExponent[#^3-#, 10]>#&] (* Jean-François Alcover, Apr 04 2013 *)

A224473 (2*5^(2^n) - 1) mod 10^n: a sequence of trimorphic numbers ending in 9.

Original entry on oeis.org

9, 49, 249, 1249, 81249, 781249, 5781249, 25781249, 425781249, 6425781249, 36425781249, 836425781249, 9836425781249, 19836425781249, 519836425781249, 2519836425781249, 12519836425781249, 512519836425781249, 4512519836425781249, 84512519836425781249
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.

Crossrefs

Cf. A033819. Corresponding 10-adic number is A091661. The other trimorphic numbers ending in 9 are included in A002283, A198971 and A224475.

Programs

  • Sage
    def A224473(n) : return crt(1, -1, 2^n, 5^n);

Formula

a(n) = (2 * A007185(n) - 1) mod 10^n.

A216093 a(n) = 10^n - (5^(2^n) mod 10^n).

Original entry on oeis.org

5, 75, 375, 9375, 9375, 109375, 7109375, 87109375, 787109375, 1787109375, 81787109375, 81787109375, 81787109375, 40081787109375, 740081787109375, 3740081787109375, 43740081787109375, 743740081787109375
Offset: 1

Views

Author

V. Raman, Sep 01 2012

Keywords

Comments

a(n)^3 mod 10^n = a(n).
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) + 1 is divisible by 2^n. - Eric M. Schmidt, Sep 01 2012
a(n+1) + a(n)^2 == 0 (mod 10^(n+1)). - Robert Israel, Apr 24 2017

Crossrefs

Programs

Formula

2^(4*5^(n-1)) mod 10^n - 1.

A318960 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.

Original entry on oeis.org

1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 1 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
		

Crossrefs

Cf. A318962.
Expansions of p-adic integers:
this sequence, A318961 (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = truncate(-sqrt(-7+O(2^(n+1))))

Formula

a(2) = 1; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318961(n).
a(n) = Sum_{i=0..n-1} A318962(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019

A318961 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.

Original entry on oeis.org

3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 3 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
		

Crossrefs

Cf. A318963.
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = if(n==2, 3, truncate(sqrt(-7+O(2^(n+1)))))

Formula

a(2) = 3; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318960(n).
a(n) = Sum_{i=0..n-1} A318963(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019

A216092 a(n) = 2^(2*5^(n-1)) mod 10^n.

Original entry on oeis.org

4, 24, 624, 624, 90624, 890624, 2890624, 12890624, 212890624, 8212890624, 18212890624, 918212890624, 9918212890624, 59918212890624, 259918212890624, 6259918212890624, 56259918212890624, 256259918212890624
Offset: 1

Views

Author

V. Raman, Sep 01 2012

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and a(n) + 1 is divisible by 5^n. - Eric M. Schmidt, Sep 01 2012

Crossrefs

Programs

  • Maple
    f:= n -> 2&^(2*5^(n-1)) mod 10^n:
    map(f, [$1..100]); # Robert Israel, Mar 13 2025
  • Mathematica
    Table[PowerMod[5,2^n,10^n],{n,20}]-1 (* Harvey P. Dale, Dec 17 2017 *)
  • Sage
    def A216092(n) : return crt(0, -1, 2^n, 5^n) # Eric M. Schmidt, Sep 01 2012

Formula

a(n) = (5^(2^n) mod 10^n) - 1.
a(n)^3 == a(n) (mod 10^n).
a(n-1) == a(n) (mod 10^(n-1)). - Robert Israel, Mar 13 2025

A075693 Difference between 10-adic numbers defined in A018248 & A018247.

Original entry on oeis.org

1, 5, -3, 9, -9, -7, 5, 7, 5, -7, 7, -9, -9, -1, 5, -3, -1, 5, 5, -9, 3, -5, -5, -9, -9, 7, -3, -3, 9, 7, 1, 9, 9, -9, 9, 7, -3, -9, -7, 9, 3, 5, 3, 5, 1, 3, 5, 1, -5, -1, -1, 9, 9, 9, 7, 7, -7, 3, -3, -7, 9, -7, -1, -9, 9, -1, -3, -3, 7, 5, -3, 9, 9, -9, -7, -9, 9, -1, -7, 3, -9, 5, 9, -7
Offset: 0

Views

Author

Robert G. Wilson v, Sep 26 2002

Keywords

Comments

Numbers in A018247 and A018248 are known as automorphic numbers in base 10, meaning that the infinite integers a=(...256259918212890625) or b=(...743740081787109376) provides a nontrivial solution to x*x == x (mod any power of 10).
Read backwards so as to match their counterparts (A007185 & A016090), A018247(0)+A018248(0) = 11 & A018247(n)+A018248(n) = 9 for all n's > 0 and their product is A076308.
All entries must be odd.
Is the accumulative sum equally positive and negative, i.e. does the sum equal 0 infinitely often?

Crossrefs

Programs

  • Mathematica
    (* execute the programming in both A018247 & A018248 *) Reverse[b - a]
    aa[n_] := For[t = 5; k = 1, True, k++, t = Mod[t^2, 10^k]; If[k == n, Return[ Quotient[t, 10^(n-1)]]]]; bb[n_] := Reap[ For[t = 6; k = 1, k <= n , k++, t = Mod[t^5, 10^k]; Sow[ Quotient[10*t, 10^k]]]][[2, 1, n]]; a[n_] := bb[n] - aa[n]; Table[a[n], {n, 1, 84}](* Jean-François Alcover, May 25 2012, after Paul D. Hanna *)

Formula

a(n) = A018248(n) - A018247(n). - Seiichi Manyama, Jul 26 2017

A113627 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k may have fewer than n digits and can be padded with leading zeros (cf. A121319).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 23 2007

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

See A121319, the main entry for this sequence, for further information.
Same as A109405 except for the initial term (14). - Max Alekseyev, May 11 2007

A121319 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k must have at least n digits (cf. A113627).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 1075353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = If[n == 1, 2, 10], m = 10^n}, While[ PowerMod[2, k, m] != Mod[k, m], k += 2]; k]; Do[ Print@f@n, {n, 9}] (* Robert G. Wilson v *)
  • PARI
    A121319(n) = { local(k,tn); tn=10^n ; forstep(k=2,1000000000,2, if ( k % tn == (2^k) % tn, return(k) ; ) ; ) ; return(0) ; } { for(n = 1,13, print( A121319(n)) ; ) ; } \\ R. J. Mathar, Aug 27 2006

Formula

If A109405(n) has n digits, a(n) = A109405(n), otherwise a(n) = A109405(n) + 10^n. - Max Alekseyev, May 05 2007

Extensions

a(6)-a(9) from Robert G. Wilson v and Jon E. Schoenfield, Aug 26 2006
a(10) from Robert G. Wilson v, Sep 26 2006
a(11)-a(16) from Alexander Adamchuk, Jan 28 2007
a(16) corrected by Max Alekseyev, Apr 12 2007
Previous Showing 11-20 of 34 results. Next