cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 115 results. Next

A378327 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).

Original entry on oeis.org

1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).

A038392 Number of mono-4-polyhexes with n cells.

Original entry on oeis.org

1, 1, 2, 6, 19, 71, 274, 1117, 4650, 19819, 85710, 375712, 1664203, 7439593, 33515758, 152019560, 693625265, 3181528275, 14661581030, 67850297506, 315187646601, 1469195636293, 6869889703638, 32215399021901, 151467334017864, 713881817440421, 3372142139764434
Offset: 1

Views

Author

Keywords

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298; see Eq. 16.

Crossrefs

Apart from initial term, (A002212 + A007317)/2. See A044045 for another version.

Programs

  • Maple
    f:= gfun:-rectoproc({(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9), a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 6, a(5) = 19, a(6) = 71, a(7) = 274, a(8) = 1117},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Oct 08 2017
  • Mathematica
    f[z_] := Sqrt[5*z^2 - 6*z + 1]; g[z_] := (2*(1 - z^2) - (1-z)*f[z] - f[z^2])/ (4*(1-z)); Drop[ CoefficientList[ Series[ g[z], {z, 0, 24}], z], 1] (* Jean-François Alcover, Oct 13 2011, after Emeric Deutsch *)

Formula

G.f.: (2(1-z^2) - (1-z)f(z) - f(z^2))/(4(1-z)) where f(z) = sqrt(1-6z+5z^2). - Emeric Deutsch, Mar 14 2004
(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9) = 0. - Robert Israel, Oct 08 2017

Extensions

More terms from Emeric Deutsch, Mar 14 2004

A086620 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 79, 47, 11, 1, 1, 13, 71, 175, 175, 71, 13, 1, 1, 15, 100, 331, 504, 331, 100, 15, 1, 1, 17, 134, 562, 1196, 1196, 562, 134, 17, 1, 1, 19, 173, 883, 2464, 3514, 2464, 883, 173, 19, 1, 1, 21, 217
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Determinants of upper left n X n matrices results in A086619: {1,2,10,150,7650,1438200,1051324200,...}, which is the products of the first n terms of the binomial transform of Catalan numbers (A007317): {1,2,5,15,51,188,731,2950,...}.

Examples

			Rows begin:
1,_1,__1,__1,___1,____1,____1,_____1, ...
1,_3,__5,__7,___9,___11,___13,____15, ...
1,_5,_14,_28,__47,___71,__100,___134, ...
1,_7,_28,_79,_175,__331,__562,___883, ...
1,_9,_47,175,_504,_1196,_2464,__4572, ...
1,11,_71,331,1196,_3514,_8764,_19244, ...
1,13,100,562,2464,_8764,26172,_67740, ...
1,15,134,883,4572,19244,67740,204831, ...
		

Crossrefs

Cf. A086621 (diagonal), A086622 (antidiagonal sums), A086619 (determinants).

Formula

Contribution from Paul Barry, Feb 04 2009: (Start)
T(n,k)=sum{j=0..n+k, C(k,j-k)*C(n+2k-j,k)*if(k<=j,A000108(n-k),0)};
Regarded as a number triangle read by row, columns are generated by sum{j=0..k, C(k,j)*A000108(j)*x^j}*x^k/(1-x)^(k+1). (End)

A091698 Matrix inverse of triangle A063967.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 8, -5, 1, 1, -23, 19, -7, 1, -1, 74, -69, 34, -9, 1, 1, -262, 256, -147, 53, -11, 1, -1, 993, -986, 615, -265, 76, -13, 1, 1, -3943, 3935, -2571, 1235, -431, 103, -15, 1, -1, 16178, -16169, 10862, -5591, 2216, -653, 134, -17, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 29 2004

Keywords

Comments

Riordan array (1/(1+x), (sqrt(1+6x+5x^2)-x-1)/(2(1+x))). The absolute value array is (1/(1-x),xc(x)/(1-xc(x))) where c(x) is the g.f. of A000108. It factorizes as (1/(1-x),x/(1-x))(1,xc(x)). - Paul Barry, Jun 10 2005

Examples

			From _Paul Barry_, Apr 15 2010: (Start)
Triangle begins
  1,
  -1, 1,
  1, -3, 1,
  -1, 8, -5, 1,
  1, -23, 19, -7, 1,
  -1, 74, -69, 34, -9, 1,
  1, -262, 256, -147, 53, -11, 1,
  -1, 993, -986, 615, -265, 76, -13, 1,
  1, -3943, 3935, -2571, 1235, -431, 103, -15, 1
Production matrix begins
  -1, 1,
  0, -2, 1,
  0, 1, -2, 1,
  0, -1, 1, -2, 1,
  0, 1, -1, 1, -2, 1,
  0, -1, 1, -1, 1, -2, 1,
  0, 1, -1, 1, -1, 1, -2, 1,
  0, -1, 1, -1, 1, -1, 1, -2, 1,
  0, 1, -1, 1, -1, 1, -1, 1, -2, 1,
  0, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1 (End)
		

Crossrefs

Row sums: A091699. Row sums (absolute values): A007317. Column 1: A050511.

Programs

  • Mathematica
    rows = 11; t[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; T = Table[t[n, k], {n, 0, rows - 1}, {k, 0, rows - 1}] // Inverse; Table[ T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 11 2017 *)

A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 51, 36, 26, 19, 14, 188, 137, 101, 75, 56, 42, 731, 543, 406, 305, 230, 174, 132, 2950, 2219, 1676, 1270, 965, 735, 561, 429, 12235, 9285, 7066, 5390, 4120, 3155, 2420, 1859, 1430, 51822, 39587, 30302, 23236, 17846, 13726, 10571, 8151, 6292, 4862
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - Wolfdieter Lang, Oct 04 2019

Examples

			From _Wolfdieter Lang_, Oct 04 2019: (Start)
The triangle T(n, k) begins:
n\k      0      1      2      3     4     5     6     7     8     9    10 ...
0:       1
1:       2      1
2:       5      3      2
3:      15     10      7      5
4:      51     36     26     19    14
5:     188    137    101     75    56    42
6:     731    543    406    305   230   174   132
7:    2950   2219   1676   1270   965   735   561   429
8:   12235   9285   7066   5390  4120  3155  2420  1859  1430
9:   51822  39587  30302  23236 17846 13726 10571  8151  6292  4862
10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
... reformatted and extended.
-------------------------------------------------------------------------
The array A(n, k) begins:
n\k  0   1    2    3     4     5      6 ...
-------------------------------------------
0:   1   1    2    5    14    42    132 ... A000108
1    2   3    7   19    56   174    561 ... A005807
2:   5  10   26   75   230   735   2420 ...
3:  15  36  101  305   965  3155  10571 ...
4:  51 137  406 1270  4120 13726  46672 ...
5: 188 543 1676 5390 17846 60398 207963 ...
... (End)
		

Crossrefs

Columns: A007317, A002212, see also A045868, A055452-A055455.
Diagonals: A000108, A005807.
Cf. A059346 (Catalan difference array as triangle).

Programs

  • Magma
    function T(n,k)
      if k gt n then return 0;
      elif k eq n then return Catalan(n);
      else return T(n-1, k) + T(n, k+1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 18 2021
  • Maple
    # Uses floating point, precision might have to be adjusted.
    C := n -> binomial(2*n,n)/(n+1);
    H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4);
    T := (n,k) -> C(k)*H(n,k);
    seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7);
    # Peter Luschny, Aug 16 2012
  • Mathematica
    T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    def T(n, k) :
        if k > n : return 0
        if n == k : return binomial(2*n, n)/(n+1)
        return T(n-1, k) + T(n, k+1)
    A106534 = lambda n,k: T(n, k)
    for n in (0..5): [A106534(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
    

Formula

T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n.
T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - Peter Luschny, Aug 16 2012
T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - Wolfdieter Lang, Oct 03 2019
G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - Vladimir Kruchinin, Jan 12 2024

A300865 Signed recurrence over binary enriched p-trees: a(n) = (-1)^(n-1) + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 46, 77, 131, 224, 391, 672, 1180, 2050, 3626, 6344, 11276, 19863, 35479, 62828, 112685, 200462, 360627, 644199, 1162296, 2083572, 3768866, 6777314, 12289160, 22158106, 40255496, 72765144, 132453122, 239936528, 437445448
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[k]*a[n-k],{k,1,n/2}];
    Array[a,50]

A346074 a(n) = 1 + Sum_{k=0..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 59, 89, 136, 205, 301, 443, 664, 1011, 1545, 2341, 3530, 5341, 8143, 12487, 19148, 29299, 44817, 68721, 105742, 163025, 251392, 387595, 597988, 924047, 1430167, 2215595, 3433788, 5323915, 8260652, 12829849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 44}]
    nmax = 44; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x)^2.
Conjecture D-finite with recurrence (n+5)*a(n) +2*(-n-4)*a(n-1) +(n+3)*a(n-2) +2*(-2*n+5)*a(n-5) +4*(n-3)*a(n-6)=0. - R. J. Mathar, Feb 17 2022
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023

A351972 a(n) = 1 + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 2, 3, 6, 11, 21, 40, 78, 151, 294, 572, 1115, 2172, 4234, 8252, 16088, 31361, 61140, 119191, 232370, 453010, 883167, 1721768, 3356675, 6543988, 12757830, 24871992, 48489172, 94531974, 184294706, 359291464, 700456240, 1365573493, 2662252082, 5190190005
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 34}]
    nmax = 34; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x^2])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(x^2))).

A360102 a(n) = Sum_{k=0..n} binomial(n+2*k,n-k) * Catalan(k).

Original entry on oeis.org

1, 2, 7, 30, 141, 703, 3655, 19603, 107679, 602756, 3426049, 19721069, 114728723, 673494466, 3984493735, 23732956453, 142204128507, 856560123504, 5183708936061, 31502904805922, 192180259402691, 1176416604202925, 7223943302003917, 44486888142708088
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Partial sums of A360100.
Partial sums are A258973.

Programs

  • Maple
    A360102 := proc(n)
        add(binomial(n+2*k,n-k)*A000108(k),k=0..n) ;
    end proc:
    seq(A360102(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^3))))

Formula

G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^2.
G.f.: (1/(1-x)) * c(x/(1-x)^3), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +4*(-2*n+1)*a(n-1) +10*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +(n-5)*a(n-4)=0. - R. J. Mathar, Mar 12 2023

A360103 a(n) = Sum_{k=0..n} binomial(n+4*k,n-k) * Catalan(k).

Original entry on oeis.org

1, 2, 9, 49, 283, 1715, 10793, 69906, 463031, 3122264, 21363065, 147951489, 1035173405, 7306326465, 51959150713, 371950057003, 2678083379707, 19381867703946, 140915907625531, 1028760981192771, 7538511404971231, 55427326349613665, 408789584900354397
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Partial sums of A360101.

Programs

  • Maple
    A360103 := proc(n)
        add(binomial(n+4*k,n-k)*A000108(k),k=0..n) ;
    end proc:
    seq(A360103(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^5))))

Formula

G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^4.
G.f.: (1/(1-x)) * c(x/(1-x)^5), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +2*(-5*n+3)*a(n-1) +(19*n-47)*a(n-2) +20*(-n+4)*a(n-3) +5*(3*n-17)*a(n-4) +2*(-3*n+22)*a(n-5) +(n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
Previous Showing 61-70 of 115 results. Next