cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A061202 (tau<=)_4(n).

Original entry on oeis.org

1, 5, 9, 19, 23, 39, 43, 63, 73, 89, 93, 133, 137, 153, 169, 204, 208, 248, 252, 292, 308, 324, 328, 408, 418, 434, 454, 494, 498, 562, 566, 622, 638, 654, 670, 770, 774, 790, 806, 886, 890, 954, 958, 998, 1038, 1054, 1058, 1198, 1208, 1248, 1264, 1304, 1308
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A007426.
Equals row sums of triangle A140703. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_5(n): A061203, (tau<=)_6(n): A061204.
Equals left column of triangle A140705.
Cf. A140703.

Programs

  • Mathematica
    (* Asymptotics: *) n * (Log[n]^3/6 + (2*EulerGamma - 1/2)*Log[n]^2 + (6*EulerGamma^2 - 4*EulerGamma - 4*StieltjesGamma[1] + 1)*Log[n] + 4*EulerGamma^3 - 6*EulerGamma^2 + 4*EulerGamma + 4*StieltjesGamma[1]*(1 - 3*EulerGamma) + 2*StieltjesGamma[2] - 1) (* Vaclav Kotesovec, Sep 09 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k = 1..n} tau_{3}(k)*floor (n/k), where tau_{3} is A007425. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n * (log(n)^3/6 + (2*g - 1/2)*log(n)^2 + (6*g^2 - 4*g - 4*g1 + 1)*log(n) + 4*g^3 - 6*g^2 + 4*g + 4*g1*(1 - 3*g) + 2*g2 - 1), where g is the Euler-Mascheroni constant A001620, g1 and g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 09 2018
a(n) = Sum_{i=1..n} tau(i)*A006218(floor(n/i)). - Ridouane Oudra, Sep 17 2021
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} floor(n/(i*j*k)). - Ridouane Oudra, Oct 31 2022

A280486 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 4, 8, 20, 36, 86, 150, 314, 564, 1088, 1902, 3557, 6085, 10902, 18506, 32124, 53584, 91133, 149749, 249315, 405121, 662582, 1063152, 1714580, 2719842, 4327302, 6797316, 10686005, 16622003, 25861855, 39866017, 61422891, 93910783, 143406552, 217537696
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[tau4[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Sep 08 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018

A061203 (tau<=)_5(n).

Original entry on oeis.org

1, 6, 11, 26, 31, 56, 61, 96, 111, 136, 141, 216, 221, 246, 271, 341, 346, 421, 426, 501, 526, 551, 556, 731, 746, 771, 806, 881, 886, 1011, 1016, 1142, 1167, 1192, 1217, 1442, 1447, 1472, 1497, 1672, 1677, 1802, 1807, 1882, 1957, 1982, 1987, 2337, 2352
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A061200.
Equals row sums of triangle A140705. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_6(n): A061204.
Cf. A140705.

Programs

  • Maple
    b:= proc(k, n) option remember; uses numtheory;
         `if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(5, n)+a(n-1)) end:
    seq(a(n), n=1..49);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    nmax = 50;
    tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}];
    Accumulate[Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k=1..n} tau_{4}(k) * floor(n/k), where tau_{4} is A007426. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^4/24 + (5*g/6 - 1/6)*log(n)^3 + 10*g1^2 + (5*g^2 - 5*g/2 - 5*g1/2 + 1/2)*log(n)^2 + (10*g^3 - 10*g^2 + (5 - 20*g1)*g + 5*g1 + 5*g2/2 - 1)*log(n) + 5*g^4 - 10*g^3 + (10 - 30*g1)*g^2 + (20*g1 + 10*g2 - 5)*g - 5*g1 - 5*g2/2 - 5*g3/6 + 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3 are the Stieltjes constants, see A082633, A086279 and A086280. - Vaclav Kotesovec, Sep 10 2018

A061204 (tau<=)_6(n).

Original entry on oeis.org

1, 7, 13, 34, 40, 76, 82, 138, 159, 195, 201, 327, 333, 369, 405, 531, 537, 663, 669, 795, 831, 867, 873, 1209, 1230, 1266, 1322, 1448, 1454, 1670, 1676, 1928, 1964, 2000, 2036, 2477, 2483, 2519, 2555, 2891, 2897, 3113, 3119, 3245, 3371, 3407, 3413
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k<=n}|, i.e. (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k<=n, x_i>0.

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_5(n): A061203.

Programs

  • Mathematica
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}]; tau5 = Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]; Accumulate[Table[Sum[tau5[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n)=Sum{i=1..n} tau_k(i). a(n)=partial sums of A034695.
a(n) = Sum_{k=1..n} tau_{5}(k) * floor(n/k), where tau_{5} is A061200. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^5/120 + (g/4 - 1/24)*log(n)^4 + (5*g^2/2 - g - g1 + 1/6)*log(n)^3 + (10*g^3 - 15*g^2/2 + (3 - 15*g1)*g + 3*g1 + 3*g2/2 - 1/2)*log(n)^2 + (15*g^4 - 20*g^3 + (15 - 60*g1)*g^2 + (30*g1 + 15*g2 - 6)*g + 15*g1^2 - 6*g1 - 3*g2 - g3 + 1)*log(n) + 6*g^5 - 15*g^4 + (20 - 60*g1)*g^3 + (60*g1 + 30*g2 - 15)*g^2 + (60*g1^2 - 30*g1 - 15*g2 - 5*g3 + 6)*g - 15*g1^2 + g1*(6 - 15*g2) + 3*g2 + g3 + g4/4 - 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3, g4 are the Stieltjes constants, see A082633, A086279, A086280 and A086281. - Vaclav Kotesovec, Sep 10 2018

A111217 d_7(n), tau_7(n), number of ordered factorizations of n as n = rstuvwx (7-factorizations).

Original entry on oeis.org

1, 7, 7, 28, 7, 49, 7, 84, 28, 49, 7, 196, 7, 49, 49, 210, 7, 196, 7, 196, 49, 49, 7, 588, 28, 49, 84, 196, 7, 343, 7, 462, 49, 49, 49, 784, 7, 49, 49, 588, 7, 343, 7, 196, 196, 49, 7, 1470, 28, 196, 49, 196, 7, 588, 49, 588, 49, 49, 7, 1372, 7, 49, 196, 924, 49, 343, 7, 196
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_k(n) for k>=2: A000005, A007425, A007426, A061200, A034695, A111218 - A111221, A111306.
Column k=7 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 7], {n, 68}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 7], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,x,numdiv(x)))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+6, 6)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

Dirichlet convolution of A000012 with A034695, or of A000005 with A061200, or of A007425 with A007426. Dirichlet g.f. zeta^7(s). - R. J. Mathar, Apr 01 2011
G.f.: Sum_{k>=1} tau_6(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+6,6). - Amiram Eldar, Sep 13 2020

A111219 d_9(n), tau_9(n), number of ordered factorizations of n as n = rstuvwxyz (9-factorizations).

Original entry on oeis.org

1, 9, 9, 45, 9, 81, 9, 165, 45, 81, 9, 405, 9, 81, 81, 495, 9, 405, 9, 405, 81, 81, 9, 1485, 45, 81, 165, 405, 9, 729, 9, 1287, 81, 81, 81, 2025, 9, 81, 81, 1485, 9, 729, 9, 405, 405, 81, 9, 4455, 45, 405, 81, 405, 9, 1485, 81, 1485, 81, 81, 9, 3645, 9, 81, 405, 3003, 81
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=9 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 9], {n, 65}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 9], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,x,numdiv(x)))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+8, 8)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_8(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+8,8). - Amiram Eldar, Sep 13 2020

A111220 d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations).

Original entry on oeis.org

1, 10, 10, 55, 10, 100, 10, 220, 55, 100, 10, 550, 10, 100, 100, 715, 10, 550, 10, 550, 100, 100, 10, 2200, 55, 100, 220, 550, 10, 1000, 10, 2002, 100, 100, 100, 3025, 10, 100, 100, 2200, 10, 1000, 10, 550, 550, 100, 10, 7150, 55, 550, 100, 550, 10, 2200, 100
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=10 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 10], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 10], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,x,numdiv(x))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+9, 9)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_9(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+9,9). - Amiram Eldar, Sep 13 2020

A280487 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} 1/(1 - x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 9, 29, 49, 135, 235, 565, 995, 2177, 3821, 7900, 13728, 26974, 46606, 88128, 150644, 276283, 467647, 835708, 1400874, 2448818, 4065230, 6975307, 11470265, 19359345, 31552473, 52488142, 84808548, 139274675, 223191639, 362297234, 576064732, 925295844
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[tau4[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018

A343662 Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2
Offset: 1

Views

Author

Gus Wiseman, May 01 2021

Keywords

Examples

			Triangle begins:
   1:  1  1
   2:  1  2  1
   3:  1  2  1
   4:  1  3  3  1
   5:  1  2  1
   6:  1  4  5  2
   7:  1  2  1
   8:  1  4  6  4  1
   9:  1  3  3  1
  10:  1  4  5  2
  11:  1  2  1
  12:  1  6 12 10  3
  13:  1  2  1
  14:  1  4  5  2
  15:  1  4  5  2
  16:  1  5 10 10  5  1
For example, row n = 12 counts the following chains:
  ()  (1)   (2/1)   (4/2/1)   (12/4/2/1)
      (2)   (3/1)   (6/2/1)   (12/6/2/1)
      (3)   (4/1)   (6/3/1)   (12/6/3/1)
      (4)   (4/2)   (12/2/1)
      (6)   (6/1)   (12/3/1)
      (12)  (6/2)   (12/4/1)
            (6/3)   (12/4/2)
            (12/1)  (12/6/1)
            (12/2)  (12/6/2)
            (12/3)  (12/6/3)
            (12/4)
            (12/6)
		

Crossrefs

Column k = 1 is A000005.
Row ends are A008480.
Row lengths are A073093.
Column k = 2 is A238952.
The case from n to 1 is A334996 or A251683 (row sums: A074206).
A non-strict version is A334997 (transpose: A077592).
The case starting with n is A337255 (row sums: A067824).
Row sums are A337256 (nonempty: A253249).
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@Subsets[Divisors[n],{k}],And@@Divisible@@@Partition[#,2,1]&]],{n,15},{k,0,PrimeOmega[n]+1}]

A062367 Multiplicative with a(p^e) = (e+1)*(e+2)*(2*e+3)/6.

Original entry on oeis.org

1, 5, 5, 14, 5, 25, 5, 30, 14, 25, 5, 70, 5, 25, 25, 55, 5, 70, 5, 70, 25, 25, 5, 150, 14, 25, 30, 70, 5, 125, 5, 91, 25, 25, 25, 196, 5, 25, 25, 150, 5, 125, 5, 70, 70, 25, 5, 275, 14, 70, 25, 70, 5, 150, 25, 150, 25, 25, 5, 350, 5, 25, 70, 140, 25, 125, 5, 70, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Crossrefs

Programs

  • Maple
    A062367 := proc(n)
        add(numtheory[tau](d)^2,d=numtheory[divisors](n)) ;
    end proc:
    seq(A062367(n),n=1..40) ; # R. J. Mathar, May 15 2025
  • Mathematica
    {1}~Join~Array[Times @@ Map[((# + 1) (# + 2) (2 # + 3))/6 &, FactorInteger[#][[All, -1]] ] &, 70, 2] (* or *)
    Array[DivisorSum[#, DivisorSigma[0, #]^2 &] &, 71] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^2) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{i|n, j|n} tau(gcd(i, j)) = Sum_{d|n} tau(d)^2.
a(n) = Sum_{i|n, j|n} tau(i)*tau(j)/tau(lcm(i, j)), where tau(n) = number of divisors of n, cf. A000005.
Dirichlet convolution of A035116 and A000012 (i.e., inverse Mobius transform of A035116). Dirichlet g.f.: zeta^5(s)/zeta(2s). - R. J. Mathar, Feb 03 2011
G.f.: Sum_{n>=1} A000005(n)^2*x^n/(1-x^n). - Mircea Merca, Feb 26 2014
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(tau(k)^2/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Dirichlet convolution of A007426 and A008966. Dirichlet convolution of A007425 and A034444. - R. J. Mathar, Jun 05 2020
Let b(n), n > 0, be Dirichlet inverse of a(n). Then b(n) is multiplicative with b(p^e) = (-1)^e*(Sum_{i=0..e} binomial(4,i)) for prime p and e >= 0, where binomial(n,k)=0 if n < k; abs(b(n)) is multiplicative and has the Dirichlet g.f.: (zeta(s))^5/(zeta(2*s))^4. - Werner Schulte, Feb 07 2021
a(n) = Sum_{d divides n} tau(d^2)*tau(n/d), Dirichlet convolution of A048691 and A000005. - Peter Bala, Jan 26 2024
Previous Showing 11-20 of 45 results. Next