cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A318837 Restricted growth sequence transform of A318836.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 7, 10, 11, 2, 12, 4, 13, 9, 10, 2, 14, 2, 15, 16, 17, 18, 19, 2, 20, 21, 22, 2, 23, 2, 16, 24, 25, 2, 26, 6, 27, 28, 21, 2, 29, 30, 31, 32, 33, 2, 34, 2, 35, 36, 37, 38, 39, 2, 28, 40, 41, 2, 42, 2, 43, 44, 32, 45, 46, 2, 47, 29, 48, 2, 49, 50, 51, 52, 53, 2, 54, 55, 40, 56, 57, 58, 59, 2, 60, 61, 44, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 05 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    A318836(n) = { my(m=1); fordiv(n,d,if((dA007431(d)!=0),m *= prime(A007431(d)))); (m); }; \\
    v318837 = rgs_transform(vector(up_to,n,A318836(n)));
    A318837(n) = v318837[n];

Formula

For all i, j: a(i) = a(j) => A062790(i) = A062790(j).

A332685 a(n) = Sum_{k=1..n} mu(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 1, 2, 0, 2, 0, 0, -1, 0, 0, 0, -1, -2, -2, -3, 0, -4, -1, -5, -4, -2, 0, -8, -3, -4, -4, -7, 0, -8, -2, -10, -5, -4, -4, -13, 0, -5, -4, -13, 1, -15, -1, -9, -10, -5, -1, -22, -4, -12, -5, -11, -1, -19, -6, -17, -6, -4, 1, -28, 0, -8, -12, -18, -6, -19, 0, -12, -5, -17
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Comments

Inverse Moebius transform of A112399.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k/GCD[n, k]], {k, 1, n}], {n, 1, 70}]
  • PARI
    a(n) = sum(k=1, n, moebius(k/gcd(n, k))); \\ Michel Marcus, Feb 21 2020

Formula

a(n) = Sum_{k=1..n} mu(lcm(n, k)/n).
a(n) = Sum_{d|n} A112399(d).

A007432 Moebius transform applied thrice to natural numbers.

Original entry on oeis.org

1, -1, 0, 1, 2, 0, 4, 1, 3, -2, 8, 0, 10, -4, 0, 2, 14, -3, 16, 2, 0, -8, 20, 0, 13, -10, 8, 4, 26, 0, 28, 4, 0, -14, 8, 3, 34, -16, 0, 2, 38, 0, 40, 8, 6, -20, 44, 0, 31, -13, 0, 10, 50, -8, 16, 4, 0, -26, 56, 0, 58, -28, 12, 8, 20, 0, 64, 14
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007431.

Programs

  • Mathematica
    a[p_, e_] := Sum[ (-1)^k*Binomial[3, k]*p^(e - k), {k, 0, Min[e, 3]}]; a[n_] := Times @@ Apply[a, FactorInteger[n], {1}]; a[1] = 1; Table[ a[n], {n, 1, 68}] (* Jean-François Alcover, Dec 28 2011, after formula *)

Formula

Multiplicative with a(p^e) = Sum_{k=0..3} (-1)^k C(3,k)*p^(e-k)[e>=k];
Dirichlet g.f.: zeta(s-1)/zeta^3(s).
a(n) = Sum{d|n} tau_{-3}(d)*n/d = Sum{d|n} tau_{-2}(d)*phi(n/d), where tau_{-3} is A007428 and tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
Sum_{k=1..n} a(k) ~ 108 * n^2 / Pi^6. - Vaclav Kotesovec, Nov 04 2018

A341635 a(n) = Sum_{d|n} phi(d) * mu(d) * mu(n/d).

Original entry on oeis.org

1, -2, -3, 1, -5, 6, -7, 0, 2, 10, -11, -3, -13, 14, 15, 0, -17, -4, -19, -5, 21, 22, -23, 0, 4, 26, 0, -7, -29, -30, -31, 0, 33, 34, 35, 2, -37, 38, 39, 0, -41, -42, -43, -11, -10, 46, -47, 0, 6, -8, 51, -13, -53, 0, 55, 0, 57, 58, -59, 15, -61, 62, -14, 0, 65
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Dirichlet inverse of A003967.
Moebius transform of A097945.
From Vaclav Kotesovec, Feb 19 2021: (Start)
Abs(a(n)) <= n.
a(n) = n iff n is in A030229. (End)

Crossrefs

Cf. A000010, A003967, A007427, A007431, A008683, A030229 (fixed points), A046099 (positions of 0's), A068341, A097945, A276833.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 65}]
    Table[Sum[MoebiusMu[GCD[n, k]] MoebiusMu[n/GCD[n, k]], {k, n}], {n, 65}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*moebius(d)*moebius(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} mu(gcd(n,k)) * mu(n/gcd(n,k)).
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003967(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A097945(d).
Multiplicative with a(p^e) = -p if e=1, p-1 if e=2, and 0 otherwise. - Amiram Eldar, Feb 19 2021

A341772 a(n) = Sum_{d|n} phi(d) * J_2(n/d).

Original entry on oeis.org

1, 4, 10, 17, 28, 40, 54, 70, 94, 112, 130, 170, 180, 216, 280, 284, 304, 376, 378, 476, 540, 520, 550, 700, 716, 720, 858, 918, 868, 1120, 990, 1144, 1300, 1216, 1512, 1598, 1404, 1512, 1800, 1960, 1720, 2160, 1890, 2210, 2632, 2200, 2254, 2840, 2682, 2864, 3040, 3060, 2860, 3432, 3640
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Comments

Dirichlet convolution of Euler totient function phi (A000010) with Jordan function J_2 (A007434).

Crossrefs

Programs

  • Mathematica
    Jordan2[n_] := Sum[MoebiusMu[n/d] d^2, {d, Divisors[n]}]; a[n_] := Sum[EulerPhi[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 55}]
    f[p_, e_] := p^(e-3)*(p-1)*(p^e*(p+1)^2-p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 31 2024 *)
  • PARI
    J2(n) = sumdiv(n, d, d^2 * moebius(n/d)); \\ A007434
    a(n) = sumdiv(n, d, eulerphi(d) * J2(n/d)); \\ Michel Marcus, Feb 20 2021

Formula

Dirichlet g.f.: zeta(s-1) * zeta(s-2) / zeta(s)^2.
a(n) = Sum_{k=1..n} J_2(gcd(n,k)).
a(n) = Sum_{d|n} psi(d) * phi(d) * phi(n/d).
a(n) = Sum_{d|n} d * phi(d) * A029935(n/d).
a(n) = Sum_{d|n} d * sigma(d) * A007427(n/d).
a(n) = Sum_{d|n} d * A321322(n/d).
a(n) = Sum_{d|n} d * A023900(d) * A338164(n/d).
a(n) = Sum_{d|n} d^2 * A007431(n/d).
a(n) = Sum_{d|n} mu(n/d) * A069097(d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)^2). - Vaclav Kotesovec, Feb 20 2021
a(n) = Sum_{k=1..n} J_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
a(n) = Sum_{1 <= i, j <= n} phi(gcd(i, j, n)). - Peter Bala, Jan 21 2024
Multiplicative with a(p^e) = p^(e-3)*(p-1)*(p^e*(p+1)^2-p). - Amiram Eldar, May 31 2024

A361707 Moebius transform applied twice to primes.

Original entry on oeis.org

2, -1, 1, 3, 7, 5, 13, 8, 15, 9, 27, 10, 37, 11, 23, 22, 55, 8, 63, 18, 37, 19, 79, 12, 77, 21, 62, 32, 105, -5, 123, 44, 73, 23, 101, 23, 153, 31, 83, 44, 175, 7, 187, 60, 84, 35, 207, 38, 195, 20, 113, 72, 237, 18, 181, 76, 133, 55, 273, 34, 279, 41, 148, 102, 217
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= (proc(p) proc(n) uses numtheory;
           add(p(d)*mobius(n/d), d=divisors(n))
         end end@@2)(ithprime):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 23 2023
  • Mathematica
    A007427[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d], {d, Divisors[n]}]; a[n_] := Sum[A007427[n/d] Prime[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
  • PARI
    A007427(n) = if( n<1, 0, direuler(p=2, n, (1 - 'x)^2)[n]) \\ from Michael Somos, Nov 15 2002
    A361707(n)=sumdiv(n, d, A007427(n/d) * prime(d)) \\ Winston de Greef, Mar 23 2023

Formula

a(n) = Sum_{d|n} A007427(n/d) * prime(d).

A127173 T(n,k) = A007427(n/k) if k divides n, T(n,k) = 0 otherwise.

Original entry on oeis.org

1, -2, 1, -2, 0, 1, 1, -2, 0, 1, -2, 0, 0, 0, 1, 4, -2, -2, 0, 0, 1, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, -2, 0, 0, 0, 1, 1, 0, -2, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, -2, 0, 0, 0, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 4, 1, -2, 0, -2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Examples

			First few rows of the triangle:
   1;
  -2,  1;
  -2,  0,  1;
   1, -2,  0,  1;
  -2,  0,  0,  0,  1;
   4, -2, -2,  0,  0, 1;
  -2,  0,  0,  0,  0, 0, 1;
   0,  1,  0, -2,  0, 0, 0, 1;
   1,  0, -2,  0,  0, 0, 0, 0, 1;
   4, -2,  0,  0, -2, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Row sums are A008683.
Column 1 is A007427.

Programs

  • PARI
    \\ here b(n) is A007427(n).
    b(n)={sumdiv(n, d, moebius(d) * moebius(n/d))}
    T(n,k)={if(n%k==0, b(n/k), 0)} \\ Andrew Howroyd, Feb 20 2022

Formula

Square of A054525 as lower triangular matrix.
A007431(n) = Sum_{k=1, n} k*T(n,k).
A007428(n) = Sum_{k=1..n} mu(k)*T(n,k).

Extensions

Missing a(10)-a(14) and a(56) and beyond from Andrew Howroyd, Feb 20 2022

A143276 Triangle read by rows: A054525 * A054523 as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 4, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 03 2008

Keywords

Comments

Row sums = phi(n), A000010: (1, 1, 2, 2, 4, 2, 6,...).
Left border = A007431: (1, 0, 1, 1, 3, 0, 5, 2, 4,...).

Examples

			First few rows of the triangle =
1;
0, 1;
1, 0, 1;
1, 0, 0, 1;
3, 0, 0, 0, 1;
0, 1, 0, 0, 0, 1;
5, 0, 0, 0, 0, 0, 1;
2, 1, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Formula

Moebius transform of triangle A054523.

Extensions

a(17), a(18) corrected by Georg Fischer, May 29 2023

A326828 a(n) = (1/2) * Sum_{d|n} mu(n/d) * phi(d) * (psi(d) + 1), where mu = A008683, phi = A000010 and psi = A001615.

Original entry on oeis.org

1, 1, 4, 5, 13, 7, 26, 19, 34, 23, 64, 32, 89, 47, 82, 74, 151, 64, 188, 105, 167, 119, 274, 127, 296, 167, 294, 214, 433, 161, 494, 292, 421, 287, 548, 290, 701, 359, 590, 417, 859, 329, 944, 540, 742, 527, 1126, 506, 1170, 576, 1012, 757, 1429, 576, 1382
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
           add(mobius(n/d)*d*(d+1)/2, d=divisors(n))
        end:
    a:= proc(n) option remember;
           add(mobius(n/d)*b(d), d=divisors(n))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[MoebiusMu[n/d] EulerPhi[d] (DirichletConvolve[j, MoebiusMu[j]^2, j, d] + 1), {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSum[n/d, MoebiusMu[#] MoebiusMu[(n/d)/#] &], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[MoebiusMu[j] MoebiusMu[i] x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} mu(j) * mu(i) * x^(i*j) / (1 - x^(i*j))^3.
Dirichlet g.f.: (zeta(s-1) + zeta(s-2)) / (2 * zeta(s)^2).
a(n) = (1/2) * Sum_{d|n} mu(n/d) * (phi(d) + J_2(d)), where J_2 = A007434.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * A007427(n/d).
a(n) = Sum_{d|n} mu(n/d) * A007438(d).
Sum_{k=1..n} a(k) ~ n^3 / (6*zeta(3)^2). - Vaclav Kotesovec, Dec 11 2021

A331388 a(n) = Sum_{k=1..n} mu(gcd(n, k)) * k / gcd(n, k).

Original entry on oeis.org

1, 0, 2, 3, 9, 3, 20, 12, 24, 10, 54, 15, 77, 21, 48, 48, 135, 24, 170, 57, 103, 55, 252, 60, 240, 78, 216, 123, 405, 47, 464, 192, 273, 136, 390, 144, 665, 171, 388, 228, 819, 102, 902, 327, 456, 253, 1080, 240, 1008, 240, 678, 465, 1377, 216, 1036, 492, 853, 406, 1710
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Comments

Moebius transform of A023896.

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(Gcd(n,k))*(k div Gcd(n,k)):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[MoebiusMu[GCD[n, k]] k/GCD[n, k], {k, 1, n}], {n, 1, 65}]
    A023896[n_] := Sum[If[GCD[n, k] == 1, k, 0], {k, 1, n}]; Table[Sum[MoebiusMu[n/d] A023896[d], {d, Divisors[n]}], {n, 1, 65}]

Formula

a(n) = (1/n) * Sum_{k=1..n} mu(gcd(n, k)) * lcm(n, k).
a(n) = Sum_{d|n} mu(n/d) * A023896(d).
a(n) = Sum_{d|n} A007427(n/d) * A057661(d).
Sum_{k=1..n} a(k) ~ n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 19 2020
Previous Showing 21-30 of 32 results. Next